Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T17:46:35.030Z Has data issue: false hasContentIssue false

IMPULSIVE PERIODIC SOLUTIONS FOR SINGULAR PROBLEMS VIA VARIATIONAL METHODS

Published online by Cambridge University Press:  16 February 2012

JUNTAO SUN*
Affiliation:
School of Science, Shandong University of Technology, Zibo, 255049 Shandong, China (email: sunjuntao2008@163.com)
DONAL O’REGAN
Affiliation:
Department of Mathematics, National University of Ireland, Galway, Ireland (email: donal.oregan@nuigalway.ie)
*
For correspondence; e-mail: sunjuntao2008@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study impulsive periodic solutions for second-order nonautonomous singular differential equations. Our proof is based on the mountain pass theorem. Some recent results in the literature are extended.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Agarwal, R. P., Franco, D. and O’Regan, D., ‘Singular boundary value problems for first and second order impulsive differential equations’, Aequationes Math. 69 (2005), 8396.CrossRefGoogle Scholar
[2]Agarwal, R. P. and O’Regan, D., ‘Existence criteria for singular boundary value problems with sign changing nonlinearities’, J. Differential Equations 183 (2002), 409433.CrossRefGoogle Scholar
[3]Agarwal, R. P., Perera, K. and O’Regan, D., ‘Multiple positive solutions of singular problems by variational methods’, Proc. Amer. Math. Soc. 134 (2005), 817824.CrossRefGoogle Scholar
[4]Ahmad, B. and Nieto, J. J., ‘Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions’, Nonlinear Anal. 69 (2008), 32913298.CrossRefGoogle Scholar
[5]Boucherif, A. and Daoudi-Merzagui, N., ‘Periodic solutions of singular nonautonomous second order differential equations’, Nonlinear Differ. Equ. Appl. 15 (2008), 147158.CrossRefGoogle Scholar
[6]Chen, L. and Sun, J., ‘Nonlinear boundary value problem for first-order impulsive functional differential equations’, J. Math. Anal. Appl. 318 (2006), 726741.CrossRefGoogle Scholar
[7]Chen, L., Tisdell, C. C. and Yuan, R., ‘On the solvability of periodic boundary value problems with impulse’, J. Math. Anal. Appl. 331 (2007), 233244.CrossRefGoogle Scholar
[8]Choisy, M., Guégan, J. F. and Rohani, P., ‘Dynamics of infectious deseases and pulse vaccination: teasing apart the embedded resonance effects’, Physica D 223 (2006), 2635.CrossRefGoogle Scholar
[9]Chu, J., Fan, N. and Torres, P. J., ‘Periodic solutions for second order singular damped differential equations’, J. Math. Anal. Appl. 388 (2012), 665675.CrossRefGoogle Scholar
[10]Chu, J., Lin, X., Jiang, D., O’Regan, D. and Agarwal, P. R., ‘Multiplicity of positive solutions to second order differential equations’, Bull. Aust. Math. Soc. 73 (2006), 175182.CrossRefGoogle Scholar
[11]Chu, J. and Nieto, J. J., ‘Impulsive periodic solution of first-order singular differential equations’, Bull. Lond. Math. Soc. 40 (2008), 143150.CrossRefGoogle Scholar
[12]Chu, J. and O’Regan, D., ‘Multiplicity results for second order nonautonomous singular Dirichlet systems’, Acta Appl. Math. 105 (2009), 323338.CrossRefGoogle Scholar
[13]Chu, J., Torres, P. J. and Zhang, M., ‘Periodic solutions of second order nonautonomous singular dynamical systems’, J. Differential Equations 239 (2007), 196212.CrossRefGoogle Scholar
[14]Chu, J. and Zhang, Z., ‘Periodic solutions of singular differential equations with sign-changing potential’, Bull. Aust. Math. Soc. 82 (2010), 437445.CrossRefGoogle Scholar
[15]Daoudi-Merzagui, N., ‘Periodic solutions of nonautonomous second order differential equations with a singularity’, Appl. Anal. 73 (1999), 449462.CrossRefGoogle Scholar
[16]Gao, S., Chen, L., Nieto, J. J. and Torres, A., ‘Analysis of a delayed epidemic model with pulse vaccination and saturation incidence’, Vaccine 24 (2006), 60376045.CrossRefGoogle ScholarPubMed
[17]George, R. K., Nandakumaran, A. K. and Arapostathis, A., ‘A note on controllability of impulsive systems’, J. Math. Anal. Appl. 241 (2000), 276283.CrossRefGoogle Scholar
[18]Lakshmikantham, V., Bainov, D. D. and Simeonov, P. S., Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989).CrossRefGoogle Scholar
[19]Li, W., Chang, Y. and Nieto, J. J., ‘Solvability of impulsive neutral evolution differential inclusions with state-dependent delay’, Math. Comput. Modelling 49 (2009), 19201927.CrossRefGoogle Scholar
[20]Li, J. and Nieto, J. J., ‘Existence of positive solutions for multipoint boundary value problem on the half-line with impulses’, Bound. Value Probl. (2009), (Article ID 834158, 12 pages).CrossRefGoogle Scholar
[21]Nenov, S., ‘Impulsive controllability and optimization problems in population dynamics’, Nonlinear Anal. 36 (1999), 881890.CrossRefGoogle Scholar
[22]Nieto, J. J. and O’Regan, D., ‘Variational approach to impulsive differential equations’, Nonlinear Anal. Real World Appl. 10 (2009), 680690.CrossRefGoogle Scholar
[23]Mawhin, J. and Willem, M., Critical Point Theory and Hamiltonian Systems (Springer, Berlin, 1989).CrossRefGoogle Scholar
[24]Qian, D. and Li, X., ‘Periodic solutions for ordinary differential equations with sublinear impulsive effects’, J. Math. Anal. Appl. 303 (2005), 288303.CrossRefGoogle Scholar
[25]Rachunková, I. and Tvrdý, M., ‘Existence results for impulsive second-order periodic problems’, Nonlinear Anal. 59 (2004), 133146.CrossRefGoogle Scholar
[26]Sun, J., Chen, H., Nieto, J. J. and Otero-Novoa, M., ‘Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects’, Nonlinear Anal. 72 (2010), 45754586.CrossRefGoogle Scholar
[27]Tian, Y. and Ge, W., ‘Applications of variational methods to boundary-value problem for impulsive differential equations’, Proc. Edinb. Math. Soc. (2) 51 (2008), 509527.CrossRefGoogle Scholar