Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-09-11T22:57:41.910Z Has data issue: false hasContentIssue false

GROUPS HAVING 12 CYCLIC SUBGROUPS

Published online by Cambridge University Press:  26 August 2025

KHYATI SHARMA*
Affiliation:
Department of Mathematics, https://ror.org/05aqahr97 Shiv Nadar Institution of Eminence , NH-91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
A. SATYANARAYANA REDDY
Affiliation:
Department of Mathematics, https://ror.org/05aqahr97 Shiv Nadar Institution of Eminence , NH-91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India e-mail: satya.a@snu.edu.in

Abstract

A finite group is said to be n-cyclic if it contains n cyclic subgroups. For a finite group G, the ratio of the number of cyclic subgroups to the number of subgroups is known as the cyclicity degree of the group G and is denoted by $\textit {cdeg} (G)$. In this paper, we classify all $12$-cyclic groups. We also prove that the set of cyclicity degrees for all the finite groups is dense in $[0,1]$, which solves a problem posed by Tărnăuceanu and Tóth [‘Cyclicity degrees of finite groups’, Acta Math. Hungar. 145(2) (2015), 489–504].

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author would like to acknowledge the UGC-SRF grant, which is enabling her doctoral work.

References

Ashrafi, A. R. and Haghi, E., ‘On $n$ -cyclic groups’, Bull. Malays. Math. Sci. Soc. 42(6) (2019), 32333246.10.1007/s40840-018-0656-3CrossRefGoogle Scholar
Belshoff, R., Dillstrom, J. and Reid, L., ‘Finite groups with a prescribed number of cyclic subgroups II’, Preprint, 2018, arXiv:1810.08328v1.10.1080/00927872.2018.1499923CrossRefGoogle Scholar
Belshoff, R., Dillstrom, J. and Reid, L., ‘Finite groups with a prescribed number of cyclic subgroups’, Comm. Algebra 47(3) (2019), 10431056.10.1080/00927872.2018.1499923CrossRefGoogle Scholar
Betz, A. and Nash, D. A., ‘Classifying groups with a small number of subgroups’, Amer. Math. Monthly 129(3) (2022), 255267.10.1080/00029890.2022.2010493CrossRefGoogle Scholar
Das, A. and Mandal, A., ‘Solvability of a group based on its number of subgroups’, Preprint, 2024, arXiv:2403.01262.Google Scholar
Frobenius, G., Verallgemeinerung des Sylow’schen Satzes: Über auflösbare Gruppen II (De Gruyter, Berlin, 1895).Google Scholar
GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.14.0 (5 December 2024). https://www.gap-system.org.Google Scholar
Hoang, N. S., ‘A limit comparison test for general series’, Amer. Math. Monthly 122(9) (2015), 893896.10.4169/amer.math.monthly.122.9.893CrossRefGoogle Scholar
Jafari, M. H. and Madadi, A. R., ‘On the number of cyclic subgroups of a finite group’, Bull. Korean Math. Soc. 54(6) (2017), 21412147.Google Scholar
Kalra, H., ‘Finite groups with specific number of cyclic subgroups’, Proc. Math. Sci. 129(4) (2019), 110.10.1007/s12044-019-0490-zCrossRefGoogle Scholar
Lazorec, S. M., ‘A connection between the number of subgroups and the order of a finite group’, J. Algebra Appl. 21(1) (2022), Article no. 2250001, 20 pages.10.1142/S0219498822500013CrossRefGoogle Scholar
Meng, W. and Lu, J., ‘Lower bounds on the number of cyclic subgroups in finite non-cyclic nilpotent groups’, J. Math. Study 56(1) (2023), 93102.10.4208/jms.v56n1.23.03CrossRefGoogle Scholar
Miller, G., ‘On the number of cyclic subgroups of a group’, Proc. Natl. Acad. Sci. USA 15(9) (1929), 728731.10.1073/pnas.15.9.728CrossRefGoogle ScholarPubMed
Miller, G. A., ‘Determination of all the groups of order ${2}^m$ which contain an odd number of cyclic subgroups of composite order’, Trans. Amer. Math. Soc. 6(1) (1905), 5862.Google Scholar
Richards, I., ‘A remark on the number of cyclic subgroups of a finite group’, Amer. Math. Monthly 91(9) (1984), 571572.10.1080/00029890.1984.11971498CrossRefGoogle Scholar
Roney-Dougal, C. M. and Tracey, G., ‘Subgroups of symmetric groups: enumeration and asymptotic properties’, Preprint, 2025, arXiv:2503.05416.Google Scholar
Sharma, K. and Reddy, A. S., ‘Groups having 11 cyclic subgroups’, Int. J. Group Theory 13(2) (2024), 203214.Google Scholar
Tărnăuceanu, M., ‘Finite groups with a certain number of cyclic subgroups’, Amer. Math. Monthly 122(3) (2015), 275276.10.4169/amer.math.monthly.122.03.275CrossRefGoogle Scholar
Tărnăuceanu, M. and Tóth, L., ‘Cyclicity degrees of finite groups’, Acta Math. Hungar. 145(2) (2015), 489504.10.1007/s10474-015-0480-2CrossRefGoogle Scholar
Tóth, L., ‘On the number of cyclic subgroups of a finite Abelian group’, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103)(4) (2012), 423428.Google Scholar
Zhou, W., ‘Finite groups with small number of cyclic subgroups’, Preprint, 2018, arXiv:1606.02431.Google Scholar