Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T22:53:47.256Z Has data issue: false hasContentIssue false

Fixed point property for general topologies in some Banach spaces

Published online by Cambridge University Press:  17 April 2009

Maria A. Japón Pineda
Affiliation:
Departamento de Análisis Matemático, Universidad de Sevilla, 41080 Sevilla, Spain e-mail: japon@us.es
Stanislaw Prus
Affiliation:
Institute of Mathematics, Maria Curie-Sklodowska University, 20–031 Lublin, Poland e-mail: bsprus@golem.umcs.lublin.pl
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the fixed point property with respect to general vector topologies in L-embedded Banach spaces. Considering a class of topologies in l1 such that the standard basis is convergent, we characterise those of them for which the fixed point property holds. We show that in c0-sums of some Banach spaces the weak topology is in a sense the coarsest topology for which the fixed point property holds.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Benavides, T.D. and Ramírez, P. Lorenzo, ‘Structure of the fixed point set and common fixed points of asymptotically nonexpansive mappings’, Proc. Amer. Math. Soc. 129 (2001), 35493557.CrossRefGoogle Scholar
[2]Benavides, T.D., Falset, J. Garcia and Pineda, M.A. Japón, ‘The τ-fixed point property for nonexpansive mappings’, Abstract Appl. Anal. 3 (1998), 343362.CrossRefGoogle Scholar
[3]Benavides, T.D., Pineda, M.A. Japón and Prus, S., ‘Weak compactness and fixed point property for affine mappings’, J. Functional Anal. 209 (2004), 115.CrossRefGoogle Scholar
[4]Dowling, P.N., Lennard, C.J. and Turett, B., ‘Characterizations of weakly compact sets and new fixed point free maps in c 0’, Studia Math. 154 (2003), 277293.CrossRefGoogle Scholar
[5]Dowling, P.N., Lennard, C.J. and Turett, B., ‘Weakly compactness is equivalent to the fixed point property in c 0’, Proc. Amer. Math. Soc. 132 (2004), 16591666.CrossRefGoogle Scholar
[6]Fabian, M., Habala, P., Hájek, P., Santalucía, V. Montesinos, Pelant, J. and Zizler, V., Functional analysis and infinite-dimensional geometry (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
[7]Falset, J. García, ‘The fixed point property in Banach spaces with NUS-property’, J. Math. Anal. Appl. 215 (1997), 532542.CrossRefGoogle Scholar
[8]Goebel, K. and Kuczumow, T., ‘Irregular convex sets with fixed point property for non-expansive mappings’, Colloq. Math. 40 (1979), 259264.CrossRefGoogle Scholar
[9]Harmand, P., Werner, D. and Werner, W., M-ideals in Banach spaces and Banach algebras (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
[10]Pineda, M.A. Japón, Stability of the fixed point property for nonexpansive mappings, (Ph.D. Dissertation) (Seville, 1998).Google Scholar
[11]Pineda, M.A. Japón, ‘Existence of fixed points for mappings of asymptotically nonexpansive type on L-embedded Banach spaces’, Nonlinear Anal. 47 (2001), 27792786.CrossRefGoogle Scholar
[12]Pineda, M.A. Japón, ‘Some fixed points results on L-embedded Banach spaces’, J. Math. Anal. Appl. 272 (2002), 380391.CrossRefGoogle Scholar
[13]Kantorovich, L.V. and Akilov, G.P., Functional analysis (Pergamon Press, Oxford-Elmsford, New York, 1982).Google Scholar
[14]Lennard, C.J., ‘A new convexity property that implies a fixed property for L 1’, Studia Math. 100 (1991), 95108.CrossRefGoogle Scholar
[15]Nowak, M., ‘Compact Hankel operators with conjugate analytic symbols’, Rend. Circ. Mat. Palermo (2) 47 (1998), 363374.CrossRefGoogle Scholar
[16]Pfitzner, H., ‘L-embedded Banach spaces and convergence in measure’, (preprint).Google Scholar
[17]Ramírez, J.L., Some deterministic and random metric fixed point theorems, (Ph.D. Dissertation) (Seville, 2002).Google Scholar
[18]Xu, H.K., ‘Existence and convergence for fixed points of mappings of asymptotically nonexpansive type’, Nonlinear Anal. 16, (1991), 11391146.CrossRefGoogle Scholar