Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-28T01:23:42.043Z Has data issue: false hasContentIssue false

THE FERMAT QUARTIC X4 + Y4 = 2m IN QUADRATIC NUMBER FIELDS

Published online by Cambridge University Press:  15 August 2025

JAYANTH ATHIPATLA*
Affiliation:
Department of Mathematics, https://ror.org/04yrkc140University of Nebraska Omaha, Omaha, NE 68182, USA

Abstract

In this paper, we generalise to the family of Fermat quartics $X^4 + Y^4 = 2^m, m \in \mathbb {Z}$, a result of Aigner [‘Über die Möglichkeit von $x^4 + y^4 = z^4$ in quadratischen Körpern’, Jahresber. Deutsch. Math.-Ver. 43 (1934), 226–228], which proves that there is only one quadratic field, namely $\mathbb {Q}(\sqrt {-7})$, that contains solutions to the Fermat quartic $X^4 + Y^4 = 1$. The $m \equiv 0 \pmod 4$ case is due to Aigner. The $m \equiv 2 \pmod 4$ case follows from a result of Emory [‘The Diophantine equation $X^4 + Y^4 = D^2Z^4$ in quadratic fields’, Integers 12 (2012), Article no. A65, 8 pages]. This paper focuses on the two cases $m \equiv 1, 3 \pmod 4$, classifying for $m \equiv 1 \pmod 4$ the infinitely many quadratic number fields that contain solutions, and proving for $m \equiv 3 \pmod 4$ that $\mathbb {Q}(\sqrt {2})$ and $\mathbb {Q}(\sqrt {-2})$ are the only quadratic number fields that contain solutions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aigner, A., ‘Über die Möglichkeit von ${x}^4+{y}^4={z}^4$ in quadratischen Körpern’, Jahresber. Dtsch. Math.-Ver. 43 (1934), 226228.Google Scholar
Conrad, K., ‘The congruent number problem’, Harv. College Math. Rev. 2(2) (2008), 5874.Google Scholar
Emory, M., ‘The Diophantine equation ${X}^4+{Y}^4={D}^2{Z}^4$ in quadratic fields’, Integers 12 (2012), Article no. A65, 8 pages.Google Scholar
Faddeev, D. K., ‘Group of divisor classes on the curve defined by the equation ${x}^4+{y}^4=1$ ’, Soviet Math. Dokl. 1 (1960), 11491151.Google Scholar
Hilbert, D., ‘Die theorie der algebraischen zahlkörper’, Jahresber. Dtsch. Math.-Ver. 4 (1894/95), 175535.Google Scholar
Lebesgue, V. A, ‘Resolution des équations biquadratiques ${z}^2={x}^4\pm {2}^m{y}^4,{z}^2={2}^m{x}^4-{y}^4,{2}^m{z}^2={x}^4\pm {y}^4$ ’, J. Math. Pures Appl. (9) 18 (1853), 7386.Google Scholar
Li, A., ‘The Diophantine equation ${x}^4+{2}^n{y}^4=1$ in quadratic number fields’, Bull. Aust. Math. Soc. 104(1) (2021), 2128.10.1017/S0004972720001173CrossRefGoogle Scholar
Mordell, L. J., ‘The Diophantine equation ${x}^4+{y}^4=1$ in algebraic number fields’, Acta Arith. 14 (1967/68), 347355.CrossRefGoogle Scholar
Mordell, L. J., Diophantine Equations, Pure and Applied Mathematics, 30 (Academic Press, London–New York, 1969).Google Scholar
Silverman, J. H., The Arithmetic of Elliptic Curves, 2nd edn, Graduate Texts in Mathematics, 106 (Springer, Dordrecht, 2009).10.1007/978-0-387-09494-6CrossRefGoogle Scholar
The LMFDB Collaboration, The L-functions and Modular Forms Database, release 1.2.1. https://www.lmfdb.org.Google Scholar
Tho, N. X., ‘The equation ${x}^4+{2}^n{y}^4={z}^4$ in algebraic number fields’, Acta Math. Hungar. 167(1) (2022), 309331.CrossRefGoogle Scholar