Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T00:52:34.787Z Has data issue: false hasContentIssue false

FAMILIES OF FRACTIONAL FANTAPPIÈ TRANSFORMS

Published online by Cambridge University Press:  07 April 2010

EVGUENI DOUBTSOV*
Affiliation:
St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia (email: dubtsov@pdmi.ras.ru)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Bn denote the unit ball in ℂn, n≥1. Given an α>0, let ℱα(n) denote the class of functions defined for zBn by integrating the kernel (1−〈z,w〉)α against a complex Borel measure (w), wBn. The family ℱ0(n) corresponds to the logarithmic kernel log (1/(1−〈z,w〉)). Various properties of the spaces ℱα(n), α≥0, are obtained. In particular, pointwise multiplies for ℱα(n) are investigated.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Andersson, M., Passare, M. and Sigurdsson, R., Complex Convexity and Analytic Functionals, Progress in Mathematics, 225 (Birkhäuser, Basel, 2004).Google Scholar
[2]Beatrous, F. and Burbea, J., ‘Holomorphic Sobolev spaces on the ball’, Dissertationes Math. (Rozprawy Mat.) 276 (1989), 60.Google Scholar
[3]Cima, J. A., Matheson, A. L. and Ross, W. T., The Cauchy Transform, Mathematical Surveys and Monographs, 125 (American Mathematical Society, Providence, RI, 2006).Google Scholar
[4]Doubtsov, E., ‘Multipliers of fractional Cauchy transforms’, Integral Equations Operator Theory 64(2) (2009), 177192.Google Scholar
[5]Doubtsov, E., ‘Fractional Cauchy transforms, multipliers and Cesàro operators’, Proc. Amer. Math. Soc. 138(2) (2010), 663673.Google Scholar
[6]Dubtsov, E. S., ‘Families of fractional Cauchy transforms in the ball’, Algebra i Analiz 21(6) (2009), 151181 (in Russian); St. Petersburg Math. J., to appear (English translation).Google Scholar
[7]Hibschweiler, R. A. and MacGregor, T. H., ‘Multipliers of families of Cauchy–Stieltjes transforms’, Trans. Amer. Math. Soc. 331(1) (1992), 377394.Google Scholar
[8]Hibschweiler, R. A. and MacGregor, T. H., Fractional Cauchy Transforms, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 136 (Chapman & Hall/CRC, Boca Raton, FL, 2006).Google Scholar
[9]Kaptanoğlu, H. T., ‘Carleson measures for Besov spaces on the ball with applications’, J. Funct. Anal. 250(2) (2007), 483520.CrossRefGoogle Scholar
[10]Rudin, W., Function Theory in the Unit Ball of C n, Grundlehren Math. Wiss., 241 (Springer, New York, Berlin, 1980).Google Scholar
[11]Vinogradov, S. A., Goluzina, M. G. and Havin, V. P., ‘Multipliers and divisors of Cauchy–Stieltjes type integrals’, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 19 (1970), 5578 (in Russian); Seminars in Math., V. A. Steklov Math. Inst., Leningrad 19 (1972), 29–42 (English translation).Google Scholar
[12]Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226 (Springer, New York, 2005).Google Scholar