Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:36:54.278Z Has data issue: false hasContentIssue false

EXTENSION OF CONTINUOUS MAPPINGS AND H1-RETRACTS

Published online by Cambridge University Press:  01 December 2008

OLENA KARLOVA*
Affiliation:
Department of Mathematical Analysis, Chernivtsi National University, Kotsjubyns’koho 2, Chernivtsi 58012, Ukraine (email: mathan@ukr.net)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that any continuous mapping f:EY on a completely metrizable subspace E of a perfect paracompact space X can be extended to a Lebesgue class one mapping g:XY (that is, for every open set V in Y the preimage g−1(V ) is an Fσ-set in X) with values in an arbitrary topological space Y.

Type
Research Article
Copyright
Copyright © 2009 Australian Mathematical Society

References

[1]Alexits, G., ‘Über die Erweiterung einer Baireschen Funktion’, Fund. Math. 15 (1930).CrossRefGoogle Scholar
[2]Borsuk, K., Theory of Retracts (Mir, Moscow, 1971), 292 pp (in Russian).Google Scholar
[3]Dugundji, J., ‘An extension of Tietze’s theorem’, Pacific J. Math. 1 (1951), 353367.CrossRefGoogle Scholar
[4]Engelking, R., General Topology (Mir, Moscow, 1986), 752 pp (in Russian).Google Scholar
[5]Hahn, H., Theorie der Reellen Funktionen (Springer, Berlin, 1921).CrossRefGoogle Scholar
[6]Hansell, R., ‘On Borel mappings and Baire functions’, Trans. Amer. Math. Soc. 194 (1974), 195211.CrossRefGoogle Scholar
[7]Hansell, R., ‘Sums, products and continuity of Borel maps’, Proc. Amer. Math. Soc. 104(2) (1988), 465471.CrossRefGoogle Scholar
[8]Hausdorff, F., Set Theory (Moscow, Leningrad, 1934).Google Scholar
[9]Kalenda, O. and Spurný, J., ‘Extending Baire-one functions on topological spaces’, Topology Appl. 149 (2005), 195216.CrossRefGoogle Scholar
[10]Karlova, O., ‘The first functional Lebesgue class and Baire classification of separately continuous mappings’, in Naukovyj Visnyk Chernivets’koho Universytetu: Matematyka, 191–192 (Ruta, Chernivtsi, 2004), pp. 52–60 (in Ukrainian).Google Scholar
[11]Kuratowski, K., ‘Sur les théorèmes topologiques de la théorie des fonctions de variables réelles’, C. R. Acad. Paris 197 (1933), 10901091.Google Scholar
[12]Kuratowski, K., Topology (Mir, Moscow, 1966), 596 pp (in Russian).Google Scholar
[13]Sierpińsky, W., ‘Sur l’extension des fonctions de Baire définities sur les ensembles linéaires quelconques’, Fund. Math. 16 (1930), 8189.CrossRefGoogle Scholar
[14]Stone, A. H., ‘On σ-discreteness and Borel isomorphism’, Amer. J. Math. 85 (1962), 655666.CrossRefGoogle Scholar
[15]Veselý, L., ‘Characterization of Baire-one functions between topological spaces’, Acta Univ. Carolin. Math. Phys. 33(2) (1992), 143156.Google Scholar