Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Chai, Xiaojuan
and
Niu, Weisheng
2014.
Existence and non-existence results for nonlinear elliptic equations with nonstandard growth.
Journal of Mathematical Analysis and Applications,
Vol. 412,
Issue. 2,
p.
1045.
Bendahmane, Mostafa
and
Mokhtari, Fares
2015.
Nonlinear elliptic systems with variable exponents and measure data.
Moroccan Journal of Pure and Applied Analysis,
Vol. 1,
Issue. 2,
p.
108.
Benboubker, Mohamed Badr
Chrayteh, Houssam
El Moumni, Mostafa
and
Hjiaj, Hassane
2015.
Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data.
Acta Mathematica Sinica, English Series,
Vol. 31,
Issue. 1,
p.
151.
Li, Zhongqing
and
Gao, Wenjie
2016.
Existence results to a nonlinearp(x)-Laplace equation with degenerate coercivity and zero-order term: renormalized and entropy solutions.
Applicable Analysis,
Vol. 95,
Issue. 2,
p.
373.
Mokhtari, Fares
2017.
Regularity of the Solution to Nonlinear Anisotropic Elliptic Equations with Variable Exponents and Irregular Data.
Mediterranean Journal of Mathematics,
Vol. 14,
Issue. 3,
Niu, Weisheng
and
Chai, Xiaojuan
2017.
Global attractors for nonlinear parabolic equations with nonstandard growth and irregular data.
Journal of Mathematical Analysis and Applications,
Vol. 451,
Issue. 1,
p.
34.
Мукминов, Фарит Хамзаевич
and
Mukminov, Farit Khamzaevich
2019.
Существование ренормализованного решения анизотропной параболической задачи для уравнения с диффузной мерой.
Труды Математического института имени В.А. Стеклова,
Vol. 306,
Issue. ,
p.
192.
Mukminov, F. Kh.
2019.
Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure.
Proceedings of the Steklov Institute of Mathematics,
Vol. 306,
Issue. 1,
p.
178.
Kozhevnikova, L. M.
2020.
On solutions of anisotropic elliptic equations with variable exponent and measure data.
Complex Variables and Elliptic Equations,
Vol. 65,
Issue. 3,
p.
333.
Kozhevnikova, Larisa Mikhailovna
2020.
Ренормализованные решения эллиптических уравнений с переменными показателями и данными в виде общей меры.
Математический сборник,
Vol. 211,
Issue. 12,
p.
83.
Kozhevnikova, L. M.
2020.
Equivalence of Entropy and Renormalized Solutions of Anisotropic Elliptic Problem in Unbounded Domains with Measure Data.
Russian Mathematics,
Vol. 64,
Issue. 1,
p.
25.
Ayadi, Hocine
and
Mokhtari, Fares
2020.
Entropy solutions for nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity.
Complex Variables and Elliptic Equations,
Vol. 65,
Issue. 5,
p.
717.
Zhang, Chao
and
Zhang, Xia
2020.
Renormalized solutions for the fractionalp(x)-Laplacian equation withL1data.
Nonlinear Analysis,
Vol. 190,
Issue. ,
p.
111610.
Kozhevnikova, L. M.
2020.
Renormalized solutions of elliptic equations with variable exponents and general measure data.
Sbornik: Mathematics,
Vol. 211,
Issue. 12,
p.
1737.
Li, Ying
Yao, Fengping
and
Zhou, Shulin
2021.
Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak–Orlicz spaces.
Nonlinear Analysis: Real World Applications,
Vol. 61,
Issue. ,
p.
103330.
Zhang, Chao
and
Zhang, Xia
2021.
Some further results on the nonlocal p-Laplacian type problems.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 151,
Issue. 3,
p.
953.
Denkowska, Anna
Gwiazda, Piotr
and
Kalita, Piotr
2021.
On renormalized solutions to elliptic inclusions with nonstandard growth.
Calculus of Variations and Partial Differential Equations,
Vol. 60,
Issue. 1,
Ge, Bin
Cao, Qinghai
and
Zhang, Yu
2023.
Renormalized non-negative solutions for the double phase Dirichlet problems with L1 data.
Journal of Mathematical Physics,
Vol. 64,
Issue. 5,
Chlebicka, Iwona
2023.
Measure data elliptic problems with generalized Orlicz growth.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 153,
Issue. 2,
p.
588.
Chen, Zengfei
and
Shen, Bingliang
2023.
The Existence of Entropy Solutions for a Class of Parabolic Equations.
Mathematics,
Vol. 11,
Issue. 17,
p.
3753.