Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:13:04.120Z Has data issue: false hasContentIssue false

DOMINATION CONDITIONS UNDER WHICH A COMPACT SPACE IS METRISABLE

Published online by Cambridge University Press:  11 February 2015

ALAN DOW
Affiliation:
Department of Mathematics and Statistics, University of North Carolina at Charlotte, NC, USA
DAVID GUERRERO SÁNCHEZ*
Affiliation:
Instituto de Matemática e Estadística, Universidade de São Paulo, Brazil email dgs@ciencias.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we partially answer a question of Cascales, Orihuela and Tkachuk [‘Domination by second countable spaces and Lindelöf ${\rm\Sigma}$-property’, Topology Appl.158(2) (2011), 204–214] by proving that under $CH$ a compact space $X$ is metrisable provided $X^{2}\setminus {\rm\Delta}$ can be covered by a family of compact sets $\{K_{f}:f\in {\it\omega}^{{\it\omega}}\}$ such that $K_{f}\subset K_{h}$ whenever $f\leq h$ coordinatewise.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Cascales, B. and Orihuela, J., ‘On compactness in locally convex spaces’, Math. Z. 195(3) (1987), 365381; doi:10.1007/BF01161762.CrossRefGoogle Scholar
Cascales, B., Orihuela, J. and Tkachuk, V. V., ‘Domination by second countable spaces and Lindelöf Σ-property’, Topology Appl. 158(2) (2011), 204214; doi:10.1016/j.topol.2010.10.014.CrossRefGoogle Scholar
Efimov, B., ‘The imbedding of the Stone-Čech compactifications of discrete spaces into bicompacta’, Dokl. Akad. Nauk USSR 189 (1969), 244246.Google Scholar
Eisworth, T., ‘Countable compactness, hereditary 𝜋-character, and the continuum hypothesis’, Topology Appl. 153(18) (2006), 35723597; doi:10.1016/j.topol.2006.03.021.Google Scholar
Guerrero Sánchez, D., ‘Domination in products’, Topology Appl., to appear.Google Scholar
Juhász, I. and Szentmiklóssy, Z., ‘Convergent free sequences in compact spaces’, Proc. Amer. Math. Soc. 116(4) (1992), 11531160.Google Scholar
Kąkol, J., Kubiś, W. and López-Pellicer, M., Descriptive Topology in Selected Topics of Functional Analysis, Developments in Mathematics, 24 (Springer, New York, 2011).CrossRefGoogle Scholar
Kunen, K., Set Theory: An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102 (North-Holland, Amsterdam, 1980).Google Scholar
Sapirovskii, B. D., ‘Maps onto Tikhonov cubes’, Russian Math. Surveys 35(3) (1980), 145156; doi:10.1070/RM1980v035n03ABEH001825.CrossRefGoogle Scholar
Tkachuk, V. V., ‘A space C p(X) is dominated by irrationals if and only if it is K-analytic’, Acta Math. Hungar. 107(4) (2005), 261273.Google Scholar