Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:18:50.544Z Has data issue: false hasContentIssue false

A counterexample using 4-linear forms

Published online by Cambridge University Press:  17 April 2009

David Pérez-García
Affiliation:
Área de Matemática Aplicada, Departmento de Matemáticas y Física Aplicadas y, Ciencias de la Naturaleza, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Edificio Departmental II, 28933 Móstoles (Madrid), e-mail: dperezg@escet.urjc.es
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that, for n ≥ 4 and arbitrary infinite dimensional Banach spaces X1,…Xn, there exists an extendible n-linear form T: X1 x…x Xn →  that is not integral.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Arens, R., ‘The adjoint of a bilinear operator’, Proc. Amer. Math. Soc. 2 (1951), 839848.CrossRefGoogle Scholar
[2]Arens, R., ‘Operations induced in function classes’, Monatsh. Math. 55 (1951), 119.CrossRefGoogle Scholar
[3]Aron, R. and Berner, P.D., ‘A Hahn-Banach extension theorem for analytic mappings’, Bull. Soc. Math. France 106 (1978), 324.CrossRefGoogle Scholar
[4]Cabello, F., García, R. and Villanueva, I., ‘Extension of multilinear operators on Banach spaces’, Extracta Math. 15 (2000), 291334.Google Scholar
[5]Carando, D., ‘Extendibility of polynomials and analytic functions on ℓp’, Studia Math. 145 (2001), 6373.CrossRefGoogle Scholar
[6]Carando, D. and Zalduendo, I., ‘A Hahn-Banach theorem for integral polynomials’, Proc. Amer. Math. Soc. 127 (1999), 241250.Google Scholar
[7]Castillo, J.M.F., García, R., and Jaramillo, J.A., ‘Extensions of bilinear forms on Banach spaces’, Proc. Amer. Math. Soc. 129 (2001), 36473656.CrossRefGoogle Scholar
[8]Defant, A. and Floret, K., Tensor norms and operator ideals, North Holland Math. Studies 176 (North-Holland Publishing Co., Amsterdam, 1993).Google Scholar
[9]Diestel, J., Jarchow, H., and Tonge, A., Absolutely summing operators (Cambridge Univ. Press, Cambridge, 1995).CrossRefGoogle Scholar
[10]Kalton, N., ‘Locally complemented subspaces and ℒp-spaces for 0 < p < 1’, Math. Nachr. 115 (7197).CrossRefGoogle Scholar
[11]Kirwan, P. and Ryan, R., ‘Extendibility of homogeneous polynomials on Banach spaces’, Proc. Amer. Math. Soc. 124 (1998), 10231029.CrossRefGoogle Scholar
[12]Lindström, M. and Ryan, R., ‘Applications of ultraproducts to infinite dimensional holomorphy’, Math. Scand. 71 (1992), 229242.Google Scholar
[13]Ryan, R. A., ‘Dunford-Pettis properties’, Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979), 373379.Google Scholar
[14]Schütt, C., ‘Unconditionality in tensor products’, Israel J. Math. 31 (1978), 209216.Google Scholar