Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T15:35:03.978Z Has data issue: false hasContentIssue false

THE COHOMOLOGY RING OF ORBIT SPACES OF FREE $\mathbb{Z}_{2}$-ACTIONS ON SOME DOLD MANIFOLDS

Published online by Cambridge University Press:  02 February 2018

ANA MARIA M. MORITA
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, CP 668, 13560-970, São Carlos - SP, Brazil email anamariamathiasmorita@gmail.com
DENISE DE MATTOS
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, CP 668, 13560-970, São Carlos - SP, Brazil email deniseml@icmc.usp.br
PEDRO L. Q. PERGHER*
Affiliation:
Departamento de Matemática, Centro de Ciências Exatas e Tecnologia, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos - SP, Brazil email pergher@dm.ufscar.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine the possible $\mathbb{Z}_{2}$-cohomology rings of orbit spaces of free actions of $\mathbb{Z}_{2}$ (or fixed point free involutions) on the Dold manifold $P(1,n)$, where $n$ is an odd natural number.

Type
Research Article
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

References

Borel, A., Seminar on Transformation Groups (Princeton University Press, Princeton, NJ, 1960).Google Scholar
Bredon, G. E., Introduction to Compact Transformation Groups (Academic Press, New York, 1972).Google Scholar
Conner, P. E. and Floyd, E. E., Differentiable Periodic Maps, Ergebnisse Series, 33 (Springer, Berlin–Heidelberg, 1964).Google Scholar
Davis, D. M., ‘Projective product spaces’, J. Topol. 3 (2010), 265279.CrossRefGoogle Scholar
Dold, A., ‘Erzeugende der Thomschen Algebra N’, Math. Z. 65 (1956), 2535.Google Scholar
Khare, S. S., ‘On Dold manifolds’, Topology Appl. 33 (1989), 297307.Google Scholar
McCleary, J., A User’s Guide to Spectral Sequences, 2nd edn (Cambridge University Press, New York, 2001).Google Scholar
Pergher, P. L. Q., Singh, H. K. and Singh, T. B., ‘On Z2 and S1 free actions on spaces of cohomology type (a, b)’, Houston J. Math. 36(1) (2010), 137146.Google Scholar
Spanier, E. H., Algebraic Topology (McGraw-Hill, New York, 1966).Google Scholar