No CrossRef data available.
Article contents
BINARY AND TERNARY CONGRUENCES INVOLVING INTERVALS AND SETS MODULO A PRIME
Published online by Cambridge University Press: 18 March 2025
Abstract
Let s be a fixed positive integer constant and let $\varepsilon $ be a fixed small positive number. Then, provided that a prime p is large enough, we prove that, for any set
${\mathcal M}\subseteq \mathbb {F}_p^*$ of size
$|{\mathcal M}|= \lfloor { p^{14/29}}\rfloor $ and integer
$H=\lfloor {p^{14/29+\varepsilon }}\rfloor $, any integer
$\lambda $ can be represented in the form

When $s=1$, we show that, for almost all primes p, if
$|{\mathcal M}|= \lfloor p^{1/2}\rfloor $ and
$H=\lfloor p^{1/2}(\log p)^{6+\varepsilon }\rfloor $, then any integer
$\lambda $ can be represented in the form

MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc
Footnotes
The third author was partially supported by ARC Grants DP230100530 and DP230100534.
References
