Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T03:59:30.897Z Has data issue: false hasContentIssue false

Best approximation by polynomials

Published online by Cambridge University Press:  17 April 2009

Sung Guen Kim
Affiliation:
Department of Mathematics, Kyungpook National University, Taegu, Korea (702-701), e-mail: sgk317@knu.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we show that if E is a separable Banach space, F is a reflexive Banach space, and n, k ∈ ℕ, then every continuous polynomial of degree n from E into F has at least one element of best approximation in the Banach subspace of all continuous k–homogeneous polynomials from E into F.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Alencar, R., Aron, R.M. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407411.CrossRefGoogle Scholar
[2]Chae, S.B., Holomorphy and calculus in normed spaces (Marcel Dekker, New York, 1985).Google Scholar
[3]Choi, Y.S. and Kim, S.G., ‘Polynomial properties of Banach spaces’, J. Math. Anal. Appl. 190 (1995), 203210.CrossRefGoogle Scholar
[4]Dineen, S., Complex analysis on infinite dimensional spaces (Springer-Verlag, London, 1999).CrossRefGoogle Scholar
[5]Farmer, J.D., ‘Polynomial reflexivity in Banach spaces’, Israel J. Math. 87 (1994), 257273.CrossRefGoogle Scholar
[6]Gonzalez, M. and Gutierrez, J.M., ‘Polynomial Grothendieck properties’, Glasgow Math. J. 37 (1995), 211219.CrossRefGoogle Scholar
[7]Holmes, R.B. and Kripke, B.R., ‘Best approximation by compact operators’, Indiana Univ. Math. J. 21 (1971), 255263.CrossRefGoogle Scholar
[8]Singer, I., Best approximation in normed linear spaces by elements of linear subspaces (Springer-Verlag, New York, Berlin, 1970).CrossRefGoogle Scholar