Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T19:43:28.913Z Has data issue: false hasContentIssue false

ANOMALOUS DIFFUSION PROCESSES: STOCHASTIC MODELS AND THEIR PROPERTIES

Published online by Cambridge University Press:  27 March 2020

SEAN CARNAFFAN*
Affiliation:
School of Mathematics and Statistics,University of Sydney, Camperdown, NSW2006, Australia email scarnaffan@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Footnotes

Thesis submitted to the University of Sydney in July 2019; degree approved on 1 October 2019; supervisor Reiichiro Kawai.

References

Carnaffan, S. and Kawai, R., ‘Cusping, transport and variance of solutions to generalized Fokker–Planck equations’, J. Phys. A 50(24) (2017), Article ID 245001.CrossRefGoogle Scholar
Carnaffan, S. and Kawai, R., ‘Solving multidimensional fractional Fokker–Planck equations via unbiased density formulas for anomalous diffusion processes’, SIAM J. Sci. Comput. 39(5) (2017), B886B915.10.1137/17M111482XCrossRefGoogle Scholar
Carnaffan, S. and Kawai, R., ‘Analytic model for transient anomalous diffusion with highly persistent correlations’, Phys. Rev. E 99(6) (2019), Article ID 062120.10.1103/PhysRevE.99.062120CrossRefGoogle ScholarPubMed
Carnaffan, S. and Kawai, R., ‘Optimal statistical inference for subdiffusion processes’, J. Phys. A 52(13) (2019), Article ID 135001.10.1088/1751-8121/ab0769CrossRefGoogle Scholar