Published online by Cambridge University Press: 06 November 2023
We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields  $\mathbb {F}$ of characteristic zero as a normalised
$\mathbb {F}$ of characteristic zero as a normalised  $\mathbb {F}$-linear functional on
$\mathbb {F}$-linear functional on  $\mathbb {F}[\alpha _1, \alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is
$\mathbb {F}[\alpha _1, \alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is  $\mathrm {SO}(2,\mathbb {F})$-invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers
$\mathrm {SO}(2,\mathbb {F})$-invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers  $$ \begin{align*} S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!} \end{align*} $$
$$ \begin{align*} S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!} \end{align*} $$
an algebraic interpretation in terms of values of this algebraic integral over some circle applied to the monomials  $\alpha _1^{2m}\alpha _2^{2n}$.
$\alpha _1^{2m}\alpha _2^{2n}$.
 $S\left(m,m+s\right)$
 for
$S\left(m,m+s\right)$
 for 
 $s\le 4$
’, Preprint, 2012, arXiv:1208.4196.Google Scholar
$s\le 4$
’, Preprint, 2012, arXiv:1208.4196.Google Scholar $6(2n)!/ n!(n+2)!$
’, J. Integer Seq. 8 (2005), Article no. 05.2.3.Google Scholar
$6(2n)!/ n!(n+2)!$
’, J. Integer Seq. 8 (2005), Article no. 05.2.3.Google Scholar