No CrossRef data available.
Published online by Cambridge University Press: 22 October 2024
Let  $\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than
$\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than  $1/2$ of
$1/2$ of  $\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith. 99(1) (2000), 61–65].
$\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith. 99(1) (2000), 61–65].
 $s=\frac{1}{2}$
’, Invent. Math. 15 (1971/72), 199–205.CrossRefGoogle Scholar
$s=\frac{1}{2}$
’, Invent. Math. 15 (1971/72), 199–205.CrossRefGoogle Scholar $L$
-functions’, Math. Z. 281 (2015), 315–332.CrossRefGoogle Scholar
$L$
-functions’, Math. Z. 281 (2015), 315–332.CrossRefGoogle Scholar $L$
-functions at
$L$
-functions at 
 $s=1/2$
’, Ann. of Math. (2) 152(2) (2000), 447–488.CrossRefGoogle Scholar
$s=1/2$
’, Ann. of Math. (2) 152(2) (2000), 447–488.CrossRefGoogle Scholar