Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T13:06:37.231Z Has data issue: false hasContentIssue false

ON NEW MINIMAL EXCLUDANTS OF OVERPARTITIONS RELATED TO SOME q-SERIES OF RAMANUJAN

Published online by Cambridge University Press:  11 February 2025

ARITRAM DHAR
Affiliation:
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA e-mail: aritramdhar@ufl.edu
AVI MUKHOPADHYAY
Affiliation:
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA e-mail: mukhopadhyay.avi@ufl.edu
RISHABH SARMA*
Affiliation:
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Abstract

Inspired by work of Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb. 23 (2019), 249–254] on the minimal excludant or ‘mex’ of partitions, we define four new classes of minimal excludants for overpartitions and establish relations to certain functions due to Ramanujan.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, G. E., ‘Ramanujan’s lost notebook V. Euler’s partition identity’, Adv. Math. 61(2) (1986), 156164.CrossRefGoogle Scholar
Andrews, G. E., The Theory of Partitions (Cambridge University Press, Cambridge, 1998).Google Scholar
Andrews, G. E., ‘Concave compositions’, Electron. J. Combin. 18(2) (2011), Article no. 6, 13 pages.CrossRefGoogle Scholar
Andrews, G. E., Dyson, F. J. and Hickerson, D. R., ‘Partitions and indefinite quadratic forms’, Invent. Math. 91(3) (1988), 391407.CrossRefGoogle Scholar
Andrews, G. E. and Newman, D., ‘Partitions and the minimal excludant’, Ann. Comb. 23 (2019), 249254.CrossRefGoogle Scholar
Andrews, G. E. and Newman, D., ‘The minimal excludant in integer partitions’, J. Integer Seq. 23 (2020), Article no. 20.2.3.Google Scholar
Andrews, G. E. and Uchimura, K., ‘Identities in combinatorics. IV. Differentiation and harmonic numbers’, Util. Math. 28 (1985), 265269.Google Scholar
Aricheta, V. M. and Donato, J. A., ‘Minimal excludant over overpartitions’, J. Integer Seq. 27 (2024), Article no. 24.7.1, 20 pages.Google Scholar
Corteel, S. and Lovejoy, J., ‘Overpartitions’, Trans. Amer. Math. Soc. 356 (2004), 16231635.CrossRefGoogle Scholar
Dhar, A., Mukhopadhyay, A. and Sarma, R., ‘Generalization of the extended minimal excludant of Andrews and Newman’, J. Integer Seq. 26 (2023), Article no. 23.3.7, 19 pages.Google Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Grabner, P. J. and Knopfmacher, A., ‘Analysis of some new partition statistics’, Ramanujan J. 12 (2006) 439454.CrossRefGoogle Scholar
Gupta, R., ‘On sum-of-tails identities’, J. Combin. Theory Ser. A 184 (2021), Article no. 105521.CrossRefGoogle Scholar
Hopkins, B. and Sellers, J. A., ‘Turning the partition crank’, Amer. Math. Monthly 127 (2020), 654657.CrossRefGoogle Scholar
Lovejoy, J. and Osburn, R., ‘Mixed mock modular $q$ -series’, J. Indian Math. Soc. (N.S.), Special volume to commemorate the 125th birth anniversary of Srinivasa Ramanujan (2013), 4561.Google Scholar
Ramanujan, S., The Lost Notebook and Other Unpublished Papers (Narosa, New Delhi, 1988).Google Scholar