Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:58:18.720Z Has data issue: false hasContentIssue false

Set Theory and C*-Algebras

Published online by Cambridge University Press:  15 January 2014

Nik Weaver*
Affiliation:
Department of Mathematics, Washington University in Saint Louis, Saint Louis, MO 63130, USAE-mail: nweaver@math.wustl.edu

Abstract

We survey the use of extra-set-theoretic hypotheses, mainly the continuum hypothesis, in the C*-algebra literature. The Calkin algebra emerges as a basic object of interest.

Type
Articles
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Akemann, C. and Weaver, N., Consistency of a counterexample to Naimark's problem, Proceedings of the National Academy of Sciences of the United States of America, vol. 101 (2004), pp. 75227525.CrossRefGoogle ScholarPubMed
[2] Akemann, C. A., Anderson, J., and Pedersen, G. K., Diffuse sequences and perfect C*-algebras, Transactions of the AmericanMathematical Society, vol. 298 (1986), pp. 747762.Google Scholar
[3] Akemann, C. A., Anderson, J., and Pedersen, G. K., Excising states of C*-algebras, Canadian Journal of Mathematics, vol. 38 (1986), pp. 12391260.CrossRefGoogle Scholar
[4] Akemann, C. A. and Pedersen, G. K., Ideal perturbations of elements in C*-algebras, Mathematica Scandinavica, vol. 41 (1977), pp. 117139.CrossRefGoogle Scholar
[5] Akemann, C. A. and Shultz, F. W., Perfect C*-algebras, vol. 55, Memoirs of the American Mathematical Society, no. 326, 1985.Google Scholar
[6] Albeverio, S., Guido, D., Ponosov, A., and Scarlatti, S., Singular traces and compact operators, Journal of Functional Analysis, vol. 137 (1996), pp. 281302.CrossRefGoogle Scholar
[7] Anderson, J., A maximal abelian subalgebra of the Calkin algebra with the extension property, Mathematica Scandinavica, vol. 42 (1978), pp. 101110.CrossRefGoogle Scholar
[8] Anderson, J., Extensions, restrictions, and representations of states on C*-algebras, Transactions of the American Mathematical Society, vol. 249 (1979), pp. 303329.Google Scholar
[9] Anderson, J., Extreme points in sets of positive linear maps on B(H), Journal of Functional Analysis, vol. 31 (1979), pp. 195217.CrossRefGoogle Scholar
[10] Anderson, J., Pathology in the Calkin algebra, Journal of Operator Theory, vol. 2 (1979), pp. 159167.Google Scholar
[11] Anderson, J., A conjecture concerning the pure states of B(H) and a related theorem, pp. 2743, Birkhaüser, 1981, pp. 27–43.CrossRefGoogle Scholar
[12] Araki, H., Mathematical theory of quantum fields, Oxford University Press, 1999.CrossRefGoogle Scholar
[13] Archbold, R., On perfect C*-algebras, Proceedings of the American Mathematical Society, vol. 97 (1986), pp. 413417.Google Scholar
[14] Blackadar, B. E., Weak expectations and nuclear C*-algebras, Indiana University Mathematics Journal, vol. 27 (1978), pp. 10211026.CrossRefGoogle Scholar
[15] Blass, A., Near coherence of filters II: applications to operator ideals, the Stone- Čech remainder of a half-line, order ideals of sequences, and slenderness of groups, Transactions of the American Mathematical Society, vol. 300 (1987), pp. 557581.Google Scholar
[16] Blass, A. and Shelah, S., Near coherence of filters III: a simplified consistency proof, Notre Dame Journal of Formal Logic, vol. 30 (1989), pp. 530538.CrossRefGoogle Scholar
[17] Blass, A. and Weiss, G., A characterization and sum decomposition for operator ideals, Transactions of the American Mathematical Society, vol. 246 (1978), pp. 407417.CrossRefGoogle Scholar
[18] Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical methanics 2: Equilibrium states, models in quantum statistical mechanics, second ed., Springer-Verlag, 1997.CrossRefGoogle Scholar
[19] Casazza, P. G. and Tremain, J. C., The Kadison Singer problem in mathematics and engineering, Proceedings of the National Academy of Sciences of the United States of America, vol. 103 (2006), pp. 20322039.CrossRefGoogle ScholarPubMed
[20] Connes, A., A survey of foliations and operator algebras, Operator algebras and applications, Part I, American Mathematical Society, 1982, pp. 521628.CrossRefGoogle Scholar
[21] Conway, J. B., A course in functional analysis, second ed., Springer-Verlag, 1990.Google Scholar
[22] Dales, H. G. and Woodin, W. H., An introduction to independence for analysts, Cambridge University Press, 1987.CrossRefGoogle Scholar
[23] Davidson, K. R., Similarity and compact perturbations of nest algebras, Journal für die Reine und Angewandte Mathematik, vol. 348 (1984), pp. 7287.Google Scholar
[24] Dixmier, J., Anneaux d'opérateurs et représentations des groupes, Séminaire Bourbaki, vol. 1 Exp. No. 40, Société Mathématique de France, 1995, pp. 331336.Google Scholar
[25] Dow, A., On ultrapowers of Boolean algebras, Topology Proceedings, vol. 9 (1984), pp. 269291.Google Scholar
[26] Drewnowski, L. and Roberts, J. W., On the primariness of the Banach space l/C0 , Proceedings of the American Mathematical Society, vol. 112 (1991), pp. 949957.Google Scholar
[27] Ge, L. and Hadwin, D., Ultraproducts of C*-algebras, Recent advances in operator theory and related topics (Kerchy, L. et al., editors), Operator Theory: Advances and Applications, vol. 127, pp. 305326.Google Scholar
[28] Glimm, J., Type I C*-algebras, Annals of Mathematics, vol. 73 (1961), pp. 572612.CrossRefGoogle Scholar
[29] Hadwin, D., Maximal nests in the Calkin algebra, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 11091113.CrossRefGoogle Scholar
[30] Harrington, L. A., Kechris, A. S., and Louveau, A., A Glimm-Effros dichotomy for Borel equivalence relations, Journal of the American Mathematical Society, vol. 3 (1990), pp. 903928.CrossRefGoogle Scholar
[31] Hinokuma, T. and Ozawa, M., Conversion from nonstandard matrix algebras to standard factors of type II1 , Illinois Journal of Mathematics, vol. 37 (1993), pp. 113.CrossRefGoogle Scholar
[32] Huruya, T., Decompositions of linear maps into nonseparable C*-algebras, Kyoto University. Research Institute for Mathematical Sciences. Publications, vol. 21 (1985), pp. 645655.CrossRefGoogle Scholar
[33] Jech, T., Set theory, Springer-Verlag, 2003.Google Scholar
[34] Johnson, B. E. and Parrott, S. K., Operators commuting with a von Neumann algebra modulo the set of compact operators, Journal of Functional Analysis, vol. 11 (1972), pp. 3961.CrossRefGoogle Scholar
[35] Jones, V. F. R., Subfactors and knots, American Mathematical Society, 1991.CrossRefGoogle Scholar
[36] Jorgensen, P. E. T., Analysis and probability: Wavelets, signals, fractals, Springer-Verlag, 2006.Google Scholar
[37] Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras, vol. I, American Mathematical Socitey, 1997.Google Scholar
[38] Kadison, R. V. and Singer, I. M., Extensions of pure states, American Journal of Mathematics, vol. 81 (1959), pp. 383400.CrossRefGoogle Scholar
[39] Kasparov, G. G., Equivariant KK-theory and the Novikov conjecture, Inventiones Mathematicae, vol. 91 (1988), pp. 147201.CrossRefGoogle Scholar
[40] Kunen, K., Set theory: An introduction to independence proofs, North-Holland, 1980.Google Scholar
[41] Laursen, K. B., Continuity of homomorphisms from C*-algebras into commutative Banach algebras, Journal of the London Mathematical Society, vol. 36 (1987), pp. 165175.CrossRefGoogle Scholar
[42] Mauldin, R. D., A representation theorem for the second dual of C[0, 1], Studia Mathematica, vol. 46 (1973), pp. 197200.CrossRefGoogle Scholar
[43] Mundici, D., Simple Bratteli diagrams with a Gödel-incomplete C*-equivalence problem, Transactions of the American Mathematical Society, vol. 356 (2004), pp. 19371955.CrossRefGoogle Scholar
[44] Naimark, M. A., Rings with involutions, Uspehi Matematiceskih Nauk (N.S.), vol. 3 (1948), pp. 52145, Russian.Google Scholar
[45] Naimark, M. A., On a problem of the theory of rings with involution, Uspehi Matematiceskih Nauk (N.S.), vol. 6 (1951), pp. 160164, Russian.Google Scholar
[46] Pedersen, G. K., C*-algebras and their automorphism groups, Academic Press, 1979.Google Scholar
[47] Reid, G. A., On the Calkin representations, Proceedings of the London Mathematical Society, vol. 23 (1971), pp. 547564.CrossRefGoogle Scholar
[48] Rosenberg, A., The number of irreducible representations of simple rings with no minimal ideals, American Journal of Mathematics, vol. 75 (1953), pp. 523530.CrossRefGoogle Scholar
[49] Runde, V., The structure of discontinuous homomorphisms from non-commutative C*-algebras, Glasgow Mathematical Journal, vol. 36 (1994), pp. 209218.CrossRefGoogle Scholar
[50] Sakai, S., C*-algebras and W*-algebras, Springer-Verlag, 1971.Google Scholar
[51] Shelah, S., Proper forcing, Springer-Verlag, 1982.CrossRefGoogle Scholar
[52] Shelah, S., Classification theory and the number of nonisomorphic models, North-Holland, 1990.Google Scholar
[53] Shelah, S. and Steprāns, J., PFA implies all automorphisms are trivial, Proceedings of the American Mathematical Society, vol. 104 (1988), pp. 12201225.CrossRefGoogle Scholar
[54] Takesaki, M., Theory of operator algebras I, Springer-Verlag, 1979.CrossRefGoogle Scholar
[55] van Mill, J., An introduction to βω, Handbook of set-theoretic topology (Kunen, K. and Vaughan, J., editors), North-Holland, 1984, pp. 503567.CrossRefGoogle Scholar
[56] Veličković, B., OCA and automorphisms of P(ω)/fin, Topology and its Applications, vol. 49 (1993), pp. 113.CrossRefGoogle Scholar
[57] Vesterstrom, J., Quotients of finite W*-algebras, Journal of Functional Analysis, vol. 9 (1972), pp. 322335.CrossRefGoogle Scholar
[58] Wald, R.M., Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, 1994.Google Scholar
[59] Weaver, N., Mathematical quantization, CRC Press, 2001.CrossRefGoogle Scholar
[60] Weaver, N., A prime C*-algebra that is not primitive, Journal of Functional Analysis, vol. 203 (2003), pp. 356361.CrossRefGoogle Scholar
[61] Weaver, N., The Kadison-Singer problem in discrepancy theory, Discrete Mathematics, vol. 278 (2004), pp. 227239.CrossRefGoogle Scholar
[62] Wofsey, E., Set theory and projections in the Calkin algebra, manuscript.Google Scholar