Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T21:56:33.641Z Has data issue: false hasContentIssue false

Early History of the Generalized Continuum Hypothesis: 1878–1938

Published online by Cambridge University Press:  15 January 2014

Gregory H. Moore*
Affiliation:
Department of Mathematics, Mcmaster University Hamilton, Ontario L8S 4K1, Canada, E-mail: ghmoore@mcmaster.ca

Abstract

This paper explores how the Generalized Continuum Hypothesis (GCH) arose from Cantor's Continuum Hypothesis in the work of Peirce, Jourdain, Hausdorff, Tarski, and how GCH was used up to Gödel's relative consistency result.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, John W., Henkin, Leon, and Tarski, Alfred (editors) [1965], The theory of models, Proceedings of the 1963 international symposium at Berkeley, North-Holland, Amsterdam.Google Scholar
Aleksandrov, Pavel S. [1916], Sur la puissance des ensemble mesurables B, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 162, pp. 323325.Google Scholar
Baer, Reinhold [1929], Zur Axiomatik der Kardinalzahlarithmetik, Mathematische Zeitschrift, vol. 29, pp. 381396.Google Scholar
Baer, Reinhold [1930], Eine Anwendung der Kontinuumhypothese in der Algebra, Journal für die reine und angewandte Mathematik, vol. 162, pp. 132133.Google Scholar
Banach, Stefan [1923], Sur le problème de la mesure, Fundamenta Mathematicae, vol. 4, pp. 733.Google Scholar
Banach, Stefan [1930], Über additive Massfunktionen in abstrakten Mengen, Fundamenta Mathematicae, vol. 15, pp. 97101.Google Scholar
Banach, Stefan and Kuratowski, Kazimierz [1929], Sur une generalisation du probleme de la mesure, Fundamenta Mathematicae, vol. 14, pp. 127131.Google Scholar
Baumgartner, James E. [1976], Almost disjoint sets, the dense set problem and the partition calculus, Annals of Mathematical Logic, vol. 10, pp. 401439.Google Scholar
Bernstein, Felix [1901], Untersuchungen aus der Mengenlehre, doctoral dissertation, Göttingen University, Waisenhaus, Halle a. S.Google Scholar
Bernstein, Felix [1905], Zur Mengenlehre, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 14, pp. 198199.Google Scholar
Bernstein, Felix [1905a], Untersuchungen aus der Mengenlehre, Mathematische Annalen, vol. 61, pp. 117155, revised version of his [1901].Google Scholar
Bernstein, Felix [1908], Zur Theorie der trigonometrischen Reihe, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch-physische Klasse, vol. 60, pp. 325338.Google Scholar
Borel, Emile [1898], Leçons sur la théorie des fonctions, Gauthier-Villars, Paris.Google Scholar
Braun, S. and Sierpiński, Wacław [1932], Sur quelques propositions équivalentes à l'hypothèse du continu, Fundamenta Mathematicae, vol. 19, pp. 17.Google Scholar
Cantor, Georg [1878], Ein Beitrag zur Mannigfaltigkeitslehre, Journal für reine und angewandte Mathematik, vol. 84, pp. 242258.Google Scholar
Cantor, Georg [1883], Über unendliche lineare Punktmannichfaltigkeiten. 5, Mathematische Annalen, vol. 21, pp. 545591.Google Scholar
Cantor, Georg [1895], Beiträge zur Begründung der transfiniten Mengenlehre. I, Mathematische Annalen, vol. 46, pp. 481512.Google Scholar
Cantor, Georg [1897], Beiträge zur Begründung der transfiniten Mengenlehre. II, Mathematische Annalen, vol. 49, pp. 207246.Google Scholar
Cantor, Georg [1991], Briefe, Springer Verlag, Berlin, edited by Meschkowski, Herbert and Nilson, Winfried.CrossRefGoogle Scholar
Church, Alonzo [1968], Paul J. Cohen and the continuum problem, Proceedings of the International Congress of Mathematicians (Moscow, 1966), pp. 1520.Google Scholar
Dauben, Joseph W. [1979], Georg Cantor: His mathematics and philosophy of the infinite, Harvard University Press, Cambridge, MA.Google Scholar
Drake, Frank R. [1974], Set theory: An introduction to large cardinals, North-Holland, Amsterdam.Google Scholar
du Bois-Reymond, Paul [1871], Sur les infinis des fonctions, Annali di matematica pura ed applicata, Series 2, vol. 4, pp. 338353.Google Scholar
du Bois-Reymond, Paul [1882], Die allgemeine Functionentheorie, Tübingen.Google Scholar
Dugac, Pierre [1989], Sur la correspondance de Borel et le theoreme de Dirichlet–Heine–Weierstrass–Borel–Schoenflies–Lebesgue, Archives internationales d'histoire des sciences, vol. 39, pp. 69110.Google Scholar
Ebbinghaus, Heinz-Dieter [2007], Zermelo and the Heidelberg congress 1904, Historia Mathematica, vol. 34, pp. 428432.Google Scholar
Fehr, H. [1904], Le 3e Congrès international des mathématiciens, Heidelberg, 1904, L'Enseignement Mathématique, vol. 6, pp. 379400.Google Scholar
Folley, K. W. [1928], The Generalized Hypothesis of the Continuum, Proceedings of the Royal Society of Canada, Series 3, vol. 22, pp. 149164.Google Scholar
Foreman, Matthew and Woodin, Hugh [1991], The Generalized Continuum Hypothesis can fail everywhere, Annals of Mathematics, Series 2, vol. 133, pp. 135.Google Scholar
Fraenkel, Abraham A. [1922], Axiomatische Begründung der transfiniten Kardinalzahlen. I, Mathematische Zeitschrift, vol. 13, pp. 153188.Google Scholar
Frei, Günther (editor) [1985], Der Briefwechsel David Hilbert–Felix Klein (1886–1918), Vandenhoeck & Ruprecht, Göttingen.Google Scholar
Gödel, Kurt [1938], The consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis, Proceedings of the National Academy of Sciences, vol. 24, pp. 556557.Google Scholar
Gödel, Kurt [1986], Collected works, vol. I, Oxford University Press, New York, edited by Feferman, Solomon, Dawson, John W. Jr., Kleene, Stephen C., Moore, Gregory H., Solovay, Robert M., and van Heijenoort, Jean.Google Scholar
Gödel, Kurt [2003], Collected works, vol. V, Oxford University Press, New York, edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Sieg, Wilfried.Google Scholar
Grattan-Guinness, Ivor [1971], The correspondence between Georg Cantor and Philip Jourdain, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 73, pp. 111130.Google Scholar
Grattan-Guinness, Ivor [1977], Dear Russell—Dear Jourdain, Duckworth, London.Google Scholar
Grattan-Guinness, Ivor [2000], The search for mathematical roots: 1870–1940. Logics, set theories, and the foundations of mathematics from Cantor through Russell to Gödel, Princeton University Press, Princeton.Google Scholar
Harward, A. E. [1905], On the transfinite numbers, Philosophical Magazine, Series 6, vol. 10, pp. 439460.Google Scholar
Hausdorff, Felix [1901], Ueber eine gewisse Art geordneter Mengen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch-physische Klasse, vol. 53, pp. 460473.Google Scholar
Hausdorff, Felix [1904], Der Potenzbegriff in der Mengenlehre, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 13, pp. 569571.Google Scholar
Hausdorff, Felix [1907], Untersuchungen über Ordnungstypen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematischphysische Klasse, vol. 59, pp. 84159.Google Scholar
Hausdorff, Felix [1907a], Über dichte Ordnungstypen, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 16, pp. 541546.Google Scholar
Hausdorff, Felix [1908], Grundzüge einer Theorie der geordneten Mengen, Mathematische Annalen, vol. 65, pp. 435505.Google Scholar
Hausdorff, Felix [1914], Grundzüge der Mengenlehre, Veit, Leipzig.Google Scholar
Hausdorff, Felix [1916], Die Mächtigkeit der Borelschen Mengen, Mathematische Annalen, vol. 77, pp. 430437.Google Scholar
Hilbert, David [1900], Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-KongreFELIX HAUSDORFF zu Paris 1900, Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physicalische Klasse, pp. 253297.Google Scholar
Jourdain, Philip E. B. [1904], On the transfinite cardinal numbers of well-ordered aggregates, Philosophical Magazine, Series 6, vol. 7, pp. 6175.Google Scholar
Jourdain, Philip E. B. [1905], On transfinite cardinal numbers of the exponential form, Philosophical Magazine, Series 6, vol. 9, 4256.Google Scholar
Jourdain, Philip E. B. [1908], On infinite sums andproducts of cardinal numbers, Quarterly Journal of Pure and Applied Mathematics, vol. 39, pp. 375384.Google Scholar
König, Julius [1905], Zum Kontinuumproblem, Mathematische Annalen, vol. 60, pp. 177180.Google Scholar
Kowalewski, Gerhard [1950], Bestand und Wandel. Meine Lebenserinnerungen zugleich ein Beitrag zur neueren Geschichte der Mathematik, Oldenbourg, Munich.Google Scholar
Kunen, Kenneth [1980], Set theory: An introduction to independence proofs, North-Holland, Amsterdam.Google Scholar
Kuratowski, Kazimierz [1974], Waclaw Sierpiński,[Sierpińiski 1974], pp. 914.Google Scholar
Lebesgue, Henri [1991], Lettres d'Henri Lebesgue à Emile Borel, Cahiers du Séminaire d'Histoire des Matheématiques, vol. 12, pp. 1506.Google Scholar
Levi, Beppo [1900], Sulla teoria delle funzioni e degli insiemi, Atti della Reale Accademia dei Lincei, Rendiconti, Classe de scienze fisiche, matematiche e naturali, Series 5, vol. 9, pp. 7279.Google Scholar
Levy, Azriel [1979], Basic set theory, Springer, New York.Google Scholar
Lindenbaum, Adolf and Tarski, Alfred [1926], Communication sur les recherches de la théorie des ensembles, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, Classe III, vol. 19, pp. 299330.Google Scholar
Lopez-Escobar, E. G. K. [1966], On defining well-orderings, Fundamenta Mathematicae, vol. 59, pp. 1321.Google Scholar
Luzin, Nikolai [1914], Sur un problème de M. Baire, Comptes Rendus Hebdomadaires des Seéances de l'Acadeémie des Sciences, Paris, vol. 158, pp. 12581261.Google Scholar
Luzin, Nikolai and Sierpiński, Wacław [1917], Sur une propriété du continu, Comptes Rendus Hebdomadaires des Seéances de l'Acadeémie des Sciences, Paris, vol. 165, pp. 498500.Google Scholar
Luzin, Nikolai and Sierpiński, Wacław [1921], Sur l'existence d'un ensemble non dénombrable qui est de première categorie dans tout ensemble parfait, Fundamenta Mathematicae, vol. 2, pp. 155157.CrossRefGoogle Scholar
Malitz, Jerome [1968], The Hanf number for complete sentences, The syntax and semantics of infinitary languages, Lecture Notes in Mathematics, vol. 72, pp. 166181.Google Scholar
Menger, Karl [1981], Recollections of Kurt Gödel, unpublished manuscript.Google Scholar
Moore, Gregory H. [1976], Ernst Zermelo, A.E. Harward, and the axiomatization of set theory, Historia Mathematica, vol. 3, pp. 206209.Google Scholar
Moore, Gregory H. [1980], Beyond first-order logic: The historical interplay between mathematical logic and axiomatic set theory, History and Philosophy of Logic, vol. 1, pp. 95137.Google Scholar
Moore, Gregory H. [1982], Zermelo's Axiom of Choice: Its origins, development and influence, Springer, New York.Google Scholar
Moore, Gregory H. [1988], The origins of forcing, Logic Colloquium '86 (Drake, F. R. and Truss, J. K., editors), North-Holland, Amsterdam, pp. 143173.Google Scholar
Moore, Gregory H. [1989], Towards a history of Cantor's continuum problem, The history of modern mathematics, vol. I: Ideas and their reception (Rowe, David E. and McCleary, John, editors), Academic Press, Boston, pp. 78121.Google Scholar
Morley, Michael [1965], Omitting classes of elements , in [Addison et al. 1965], pp. 265273.Google Scholar
Moschovakis, Yiannis N. [1994], Notes on set theory, Springer, New York.CrossRefGoogle Scholar
Myhill, John R. and Scott, Dana S. [1971], Ordinal definability, Axiomatic set theory, Proceedings of Symposia in Pure Mathematics, vol. 13.1, American Mathematical Society, Providence, pp. 271278.Google Scholar
Patai, Ladislaus [1930], Untersuchungen über die ℵ-Reihe, Mathematische und naturwissenschaftliche Berichte aus Ungarn, vol. 37, pp. 127142.Google Scholar
Peirce, Charles S. [1895/1976], On quantity, with special reference to collectional and mathematical infinity, unpublished manuscript printed in his [1976], pp. 3963.Google Scholar
Peirce, Charles S. [1909/1933], Some amazing mazes, fourth curiosity, [Peirce 1933], pp. 551580.Google Scholar
Peirce, Charles S. [1933], Collected papers of Charles Sanders Peirce, vol. IV, Harvard University Press, Cambridge, MA, edited by Hartshorne, Charles and Weiss, Paul.Google Scholar
Peirce, Charles S. [1976], The new elements of mathematics, vol. III, Mouton, Paris, edited by Eisele, Carolyn.Google Scholar
Schmid, Anne-Françoise (editor) [2001], Bertrand Russell: Correspondance sur la philosophie, la logique et la politique avec Louis Couturat (1897–1913), Kimé, Paris.Google Scholar
Schoenflies, Arthur [1899], Mengenlehre, Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (Meyer, Wilhelm Franz, editor), Teubner, Leipzig, Band I: Algebra und Zahlentheorie, 1. Teil: A. Grundlagen, §5, pp. 184207.Google Scholar
Schoenflies, Arthur [1900], Die Entwickelung der Lehre von den Punktmannigfaltigkeiten, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 8, part II, pp. 1251.Google Scholar
Schoenflies, Arthur [1922], Zur Erinnerung an Georg Cantor, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 31, pp. 97106.Google Scholar
Schoenflies, Arthur and Hahn, Hans [1913], Entwickelung der Mengenlehre und ihrer Anwendungen. Erste Hälfte. Allgemeine Theorie der unendlichen Mengen und Theorie der Punktmengen, Teubner, Leipzig.Google Scholar
Scott, Dana S. [1965], Logic with denumerably long formulas and finite strings of quantifiers , in [Addison, et al. 1965], pp. 329341.Google Scholar
Shelah, Saharon [1970], A note on Hanf numbers, Pacific Journal of Mathematics, vol. 34, pp. 541545.Google Scholar
Sierpiński, Wacław [1919], Sur un théorème équivalent a l'hypothèse du continu, Bulletin internationale de l'Académie des Sciences de Cracovie, classe des sciences mathématiques, série A, pp. 13, reprinted in [1975], pp. 272–274.Google Scholar
Sierpiński, Wacław [1922], Sur un problème concernant les sous-ensembles croissants du continu, Fundamenta Mathematicae, vol. 3, pp. 109112, reprinted in [1975], pp. 444–447.Google Scholar
Sierpinski, Wacław [1924], Sur l'hypothèse du continu, Fundamenta Mathematicae, vol. 5, pp. 177187, reprinted in [1975], pp. 527–536.Google Scholar
Sierpiński, Wacław [1928], Sur une décomposition d'ensembles, Monatshefte für Mathematik und Physik, vol. 35, pp. 239243, reprinted in [1975], pp. 719–722.Google Scholar
Sierpiński, Wacław [1934], Hypothèse du continu, Monografie Matematiczne, Warsaw.Google Scholar
Sierpiński, Wacław [1947], L'hypothèse généralisée du continu et l'axiome du choix, Fundamenta Mathematicae, vol. 34, pp. 15.Google Scholar
Sierpiński, Wacław [1974], Oeuvres choisies, vol. 1, PWN, Warsaw, edited by Hartman, Stanislaw and Schinzel, Andrzej.Google Scholar
Sierpiński, Wacław [1975], Oeuvres choisies, vol. 2, PWN, Warsaw, edited by Hartman, Stanislaw, Kuratowski, Kazimierz, Marczewski, Edward, Mostowski, Andrzej, and Schinzel, Andrzej.Google Scholar
Sierpiński, Wacław [1976], Oeuvres choisies, vol. 3, PWN, Warsaw, edited by Hartman, Stanislaw, Kuratowski, Kazimierz, Marczewski, Edward, Mostowski, Andrzej, and Schinzel, Andrzej.Google Scholar
Sierpiński, Wacław and Tarski, Alfred [1930], Sur une propriété charactéristique des nombres inaccessibles, Fundamenta Mathematicae, vol. 15, pp. 292300.Google Scholar
Specker, Ernst [1954], Verallgemeinerte Kontinuumshypothese und Auswahlaxiom, Archiv der Mathematik, vol. 5, pp. 332337.Google Scholar
Tarski, Alfred [1925], Quelques théorèmes sur les alephs, Fundamenta Mathematicae, vol. 7, pp. 114.CrossRefGoogle Scholar
Tarski, Alfred [1928], Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fundamenta Mathematicae, vol. 12, pp. 188205.Google Scholar
Tarski, Alfred [1929], Sur la décomposition des ensembles en sous-ensembles presque disjoints (Supplément), Fundamenta Mathematicae, vol. 14, pp. 205215.Google Scholar
Tarski, Alfred [1929a], Geschichtliche Entwickelung und gegenwärtiger Zustand der Gleichmaüchtigkeitstheorie und der Kardinalarithmetik, Annales de la Socieéteé Polonaise de Matheématiques ( Dodatek), vol. 7, pp. 4854.Google Scholar
Tarski, Alfred [1938], Ein Überdeckungssatz für endliche Mengen nebst einigen Bemerkungen über die Definitionen der Endlichkeit, Fundamenta Mathematicae, vol. 30, pp. 156163.Google Scholar
Uiam, Stanisław [1930], Zur Masstheorie in der allgemeinen Mengenlehre, Fundamenta Mathematicae, vol. 16, pp. 140150.Google Scholar
Young, William H. [1903], Zur Lehre der nicht abgeschlossenen Punktmengen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch-physische Klasse, vol. 55, pp. 287293.Google Scholar
Zermelo, Ernst [1904], Beweis, daβ jede Menge wohlgeordnet werden kann (Aus einem an Herrn Hilbert gerichteten Briefe), Mathematische Annalen, vol. 59, pp. 514516.Google Scholar
Zermelo, Ernst [1908], Untersuchungen über die Grundlagen der Mengenlehre. I, Mathematische Annalen, vol. 65, pp. 261281.Google Scholar
Zermelo, Ernst [1930], Über Grenzzahlen und Mengenbereiche, Fundamenta Mathematicae, vol. 16, pp. 2947.Google Scholar