Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T23:01:53.983Z Has data issue: false hasContentIssue false

CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS THEOREMS

Published online by Cambridge University Press:  05 January 2021

YONG CHENG*
Affiliation:
SCHOOL OF PHILOSOPHY WUHAN UNIVERSITYWUHAN, 430072HUBEI, P.R. CHINAE-mail: world-cyr@hotmail.com

Abstract

We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.

Type
Articles
Copyright
© The Association for Symbolic Logic 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamowicz, Z. and Bigorajska, T., Existentially closed structures and Gödel’s second incompleteness theorem. The Journal of Symbolic Logic, vol. 66 (2001), no. 1, pp. 349356.CrossRefGoogle Scholar
Arai, T., Derivability conditions on Rosser’s provability predicates. Notre Dame Journal of Formal Logic, vol. 31 (1990), no. 4, pp. 487497.CrossRefGoogle Scholar
Artemov, S. N., The provability of consistency, preprint, 2019, arXiv:1902.07404v5.Google Scholar
Avigad, J., Incompleteness via the halting problem, 2005, https://www.andrew.cmu.edu/user/avigad/Teaching/halting.pdf.Google Scholar
Barwise, K. J., Comments introducing Boolos’ article. Notices of the American Mathematical Society, vol. 36 (1989), no. 388.Google Scholar
Beklemishev, L. D., On the classification of propositional provability logics. Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya, vol. 53 (1989), no. 5, pp. 915943, translated in Mathematics of the USSR-Izvestiya, vol. 35 (1990), no. 2, pp. 247–275.Google Scholar
Beklemishev, L. D., The Worm Principle, Logic Group Preprint Series, vol. 219, Utrecht University, the Netherlands, 2003.Google Scholar
Beklemishev, L. D., Gödel incompleteness theorems and the limits of their applicability I. Russian Mathematical Surveys, vol. 65 (2010), no. 5, pp. 857899.CrossRefGoogle Scholar
Beklemishev, L. D. and Shamkanov, D. S., Some abstract versions of Gödel’s second incompleteness theorem based on non-classical logics, A Tribute to Albert Visser (Alberti, L. A., editor), College Publications, 2016, pp. 1529.Google Scholar
Berline, C., Mcaloon, K., and Ressayre, J. P. (eds.), Model Theory and Arithmetic, Lecture Notes in Mathematics, vol. 890, Springer, Berlin, 1981.CrossRefGoogle Scholar
Bezboruah, A. and Shepherdson, J. C., Gödel’s second incompleteness theorem for $\boldsymbol{Q}$ . The Journal of Symbolic Logic, vol. 41 (1976), no. 2, pp. 503512.Google Scholar
Blanck, R., Contributions to the Metamathematics of Arithmetic: Fixed Points, Independence, and Flexibility , Ph.D. thesis, University of Gothenburg, Acta Universitatis Gothoburgensis, 2017.Google Scholar
Boolos, G., A new proof of the Gödel incompleteness theorem. Notices of the American Mathematical Society, vol. 36 (1989), pp. 388390.Google Scholar
Boolos, G., The Logic of Provability, Cambridge University Press, Cambridge, 1995.Google Scholar
Bovykin, A., Brief introduction to unprovability. Logic Colloquium, Lecture Notes in Logic, vol. 32, Cambridge University Press, Cambridge, 2009, pp 3864.Google Scholar
Buldt, B., The scope of Gödel’s first incompleteness theorem. Logica Universalis, vol. 8 (2014), no. (3–4), pp. 499552.CrossRefGoogle Scholar
Buss, S. R., Bounded Arithmetic, Studies in Proof Theory, Lecture Notes, vol. 3, Bibliopolis, Naples, 1986.Google Scholar
Buss, S. R., First-order theory of arithmetic. Handbook Proof Theory, Elsevier, Amsterdam, 1998, pp 79148.CrossRefGoogle Scholar
Chaitin, G. J., Information-theoretic limitations of formal systems. Journal of the Association for Computing Machinery, vol. 21 (1974), pp. 403424.CrossRefGoogle Scholar
Chao, C. and Seraji, P., Gödel’s second incompleteness theorem for \ ${\varSigma}_n$ -definable theories. Logic Journal of the IGPL, vol. 26 (2018), no. 2, pp. 255257.CrossRefGoogle Scholar
Cheng, Y., Incompleteness for Higher-Order Arithmetic: An Example Based on Harrington’s Principle, Springer Series: Springer, Briefs in Mathematics, Springer, 2019.CrossRefGoogle Scholar
Cheng, Y., Finding the limit of incompleteness I, this Journal, 2020, to appear, doi:10.1017/bsl.2020.09.CrossRefGoogle Scholar
Cheng, Y., On the depth of Gödel’s incompleteness theorem, preprint, 2020, arXiv:2008.13142.Google Scholar
Cheng, Y. and Schindler, R., Harrington’s principle in higher order arithmetic. The Journal of Symbolic Logic, vol. 80, (2015), no. 02, pp 477489.CrossRefGoogle Scholar
Cieśliński, C., Heterologicality and incompleteness. Mathematical Logic Quarterly, vol. 48 (2002), no. 1, pp. 105110.3.0.CO;2-V>CrossRefGoogle Scholar
Cieśliński, C. and Urbaniak, R., Gödelizing the Yablo sequence. Journal of Philosophical Logic, vol. 42 (2013), no. (5), pp. 679695.CrossRefGoogle Scholar
Clote, P. and Mcaloon, K., Two further combinatorial theorems equivalent to the 1-consistency of Peano arithmetic. Journal of Symbolic Logic, vol. 48 (1983), no.4, pp. 10901104.CrossRefGoogle Scholar
Dean, W., Incompleteness via paradox and completeness. Review of Symbolic Logic, vol. 13 (2020), no. 3, pp. 541592.CrossRefGoogle Scholar
Enderton, H. B., A Mathematical Introduction to Logic, second ed., Academic Press, Boston, MA, 2001.Google Scholar
Enderton, H. B., Computability Theory, An Introduction to Recursion Theory, Academic Press, Cambridge, MA, 2011.Google Scholar
Enderton, H. B. (with contributions by Szczerba, L. W.), Classical Mathematical Logic: The Semantic Foundations of Logic, Princeton University Press, 2011.Google Scholar
Feferman, S., Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae, vol. 49 (1960), pp. 3592.CrossRefGoogle Scholar
Feferman, S., Transfinite recursive progressions of axiomatic theories. Journal of Symbolic Logic, vol. 27 (1962), pp. 259316.CrossRefGoogle Scholar
Feferman, S., The impact of the incompleteness theorems on mathematics. Notices of the AMS, vol. 53 (2006), no. 4, pp. 434439.Google Scholar
Ferreira, F. and Ferreira, G., Interpretability in Robinson’s Q. this Journal, vol. 19 (2013), no. 3, pp. 289317.Google Scholar
Fitch, F. B., A Gödelized formulation of the prediction paradox. American Philosophical Quarterly, vol. 1 (1964), pp. 161164.Google Scholar
Franzen, T., Inexhaustibility: A Non-Exhaustive Treatment, Lecture Notes in Logic, vol. 16, Cambridge University Press, Cambridge, 2017.CrossRefGoogle Scholar
Friedman, H., On the necessary use of abstract set theory. Advances in Mathematics, vol. 41 (1981), pp. 209280.CrossRefGoogle Scholar
Friedman, H., Finite functions and the necessary use of large cardinals. Annals of Mathematics, vol. 148 (1998), pp. 803893.CrossRefGoogle Scholar
Friedman, H., Boolean Relation Theory and Incompleteness, Manuscript, to appear.Google Scholar
Friedman, S.-D., Rathjen, M., and Weiermann, A., Slow consistency. Annals of Pure and Applied Logic, vol. 164 (2013), no. 3, pp. 382393.CrossRefGoogle Scholar
Ganea, M., Arithmetic on semigroups. Journal of Symbolic Logic, vol. 74 (2009), no. 1, pp. 265278.CrossRefGoogle Scholar
Gödel, K., Über formal unentscheidbare sätze der Principia Mathematica und verwandter systeme I. Monatshefte für Mathematik und Physik, vol. 38 (1931), no. 1, pp. 173198.CrossRefGoogle Scholar
Gödel, K., Kurt Gödel’s Collected Works, vol. 1: Publications 1929–1936, Oxford University Press, New York, 1986, pp. 145195.Google Scholar
Gordeev, L. and Weiermann, A., Phase transitions of iterated Higman-style well-partial-orderings. Archive for Mathematical Logic, vol. 51 (2012), no. 1–2, pp. 127161.CrossRefGoogle Scholar
Grabmayr, B., On the invariance of Gödel’s second theorem with regard to numberings. The Review of Symbolic Logic, 2020, doi: 10.1017/S1755020320000192.Google Scholar
Grzegorczyk, A., Undecidability without arithmetization. Studia Logica, vol. 79 (2005), no. 2, pp. 163230.CrossRefGoogle Scholar
Grzegorczyk, A. and Zdanowski, K., Undecidability and concatenation, Andrzej Mostowski and Foundational Studies (Ehrenfeucht, A., Marek, V. W., and Srebrny, M., editors), IOS Press, Amsterdam, 2008, pp. 7291.Google Scholar
Guaspari, D., Partially conservative extensions of arithmetic. Transactions of the American Mathematical Society, vol. 254 (1979), pp. 4768.CrossRefGoogle Scholar
Guaspari, D. and Solovay, R. M., Rosser sentences. Annals of Mathematical Logic, vol. 16 (1979), no. 1, pp. 8199.CrossRefGoogle Scholar
Hájek, P., Interpretability and fragments of arithmetic, Arithmetic, Proof Theory and Computational Complexity (Clote, P. and Krajícek, J., editors), Oxford Logic Guides, 23, Clarendon Press, Oxford, 1993, pp. 185196.Google Scholar
Hájek, P. and Paris, J., Combinatorial principles concerning approximations of functions. Archive for Mathematical Logic, vol. 26 (1986), no. 1–2, pp. 1328.CrossRefGoogle Scholar
Hájek, P. and Pudlák, P., Metamathematics of First-Order Arithmetic, Perspectives in Logic, vol. 3, Cambridge University Press, Cambridge, 2017.Google Scholar
Halbach, V. and Visser, A., Self-reference in arithmetic I. Review of Symbolic Logic, vol. 7 (2014a), no. 4, pp. 671691.CrossRefGoogle Scholar
Halbach, V. and Visser, A., Self-reference in arithmetic II. Review of Symbolic Logic, vol. 7 (2014b), no. (4), pp. 692712.CrossRefGoogle Scholar
Hamano, M. and Okada, M., A relationship among Gentzen’s proof-reduction, Kirby–Paris’ hydra game, and Buchholz’s hydra game. Mathematical Logic Quarterly, vol. 43 (1997), no. 1, pp. 103120.CrossRefGoogle Scholar
Henk, P. and Pakhomov, F., Slow and ordinary provability for Peano arithmetic, preprint, 2016, arXiv:1602.1822.Google Scholar
Higuchi, K. and Horihata, Y., Weak theories of concatenation and minimal essentially undecidable theories—An encounter of WTC and S2S. Archive for Mathematical Logic, vol. 53 (2014), no. 7–8, pp. 835853.CrossRefGoogle Scholar
Hilbert, D. and Bernays, P., Grundlagen der Mathematik, Vols. I and II, second ed., Springer-Verlag, Berlin, 1934 and 1939.Google Scholar
Hilbert, D. and Bernays, P., Grundlagen der Mathematik, vol. II, Springer-Verlag, Berlin, 1939.Google Scholar
Isaacson, D., Arithmetical truth and hidden higher-order concepts, Logic Colloquium 85 (Barwise, J., Kaplan, D., Keisler, H. J., Suppes, P., and Troelstra, A. S., editors), Studies in Logic and the Foundations of Mathematics, vol. 122, North-Holland, Amsterdam, 1987, pp. 147169.CrossRefGoogle Scholar
Isaacson, D., Necessary and sufficient conditions for undecidability of the Gödel sentence and its truth, Logic, Mathematics, Philosophy: Vintage Enthusiasms (DeVidi, D., Hallett, M., and Clark, P., editors), Western Ontario Series in Philosophy of Science, vol. 75, Springer, 2011, pp. 135152.CrossRefGoogle Scholar
Jech, T., On Gödel’s second incompleteness theorem. Proceedings of the American Mathematical Society, vol. 121 (1994), no. 1, pp. 311313.Google Scholar
Jeřábek, E., Recursive functions and existentially closed structures. Journal of Mathematical Logic, vol. 20 No. 01, 2050002 (2020).CrossRefGoogle Scholar
Jones, J. P. and Shepherdson, J. C., Variants of Robinson’s essentially undecidable theory. R . Archive for Mathematical Logic, vol. 23 (1983), pp. 6577.Google Scholar
Kanamori, A. and Mcaloon, K., On Gödel’s incompleteness and finite combinatorics. Annals of Pure Applied Logic, vol. 33 (1987), no. 1, pp. 2341.CrossRefGoogle Scholar
Kaye, R. and Kotlarski, H., On models constructed by means of the arithmetized completeness theorem. Mathematical Logic Quarterly, vol. 46 (2000), no. 4, pp. 505516.3.0.CO;2-M>CrossRefGoogle Scholar
Kikuchi, M., A note on Boolos’ proof of the incompleteness theorem. Mathematical Logic Quarterly, vol. 40 (1994), pp. 528532.CrossRefGoogle Scholar
Kikuchi, M., Kolmogorov complexity and the second incompleteness theorem. Archive for Mathematical Logic, vol. 36 (1997), no. 6, pp. 437443.CrossRefGoogle Scholar
Kikuchi, M. and Kurahashi, T., Three short stories around Gödel’s incompleteness theorems (in Japanese), Journal of the Japan Association for Philosophy of Science, vol. 38 (2011), no. 2, pp. 2732.CrossRefGoogle Scholar
Kikuchi, M. and Kurahashi, T., Generalizations of Gödel’s incompleteness theorems for ${\varSigma}_n$ -definable theories of arithmetic. The Review of Symbolic Logic, vol. 10 (2017), no. 4, pp. 603616.CrossRefGoogle Scholar
Kikuchi, M. and Kurahashi, T., Universal Rosser predicates. The Journal of Symbolic Logic, vol. 82 (2017), no. 1, pp. 292302.CrossRefGoogle Scholar
Kikuchi, M., Kurahashi, T., and Sakai, H., On proofs of the incompleteness theorems based on Berry’s paradox by Vopěnka, Chaitin, and Boolos. Mathematical Logic Quarterly, vol. 58 (2012), no. 4–5, pp. 307316.CrossRefGoogle Scholar
Kikuchi, M. and Tanaka, K., On formalization of model-theoretic proofs of Gödel’s theorems. Notre Dame Journal of Formal Logic, vol. 35 (1994), no. 3, pp. 403412.CrossRefGoogle Scholar
Kirby, L., Flipping properties in arithmetic. The Journal of Symbolic Logic, vol. 47 (1982), no. 2, pp. 416422.CrossRefGoogle Scholar
Kleene, S. C., A symmetric form of Godel’s theorem. Indagationes Mathematicae, vol. 12 (1950), pp. 244246.Google Scholar
Kotlarski, H., On the incompleteness theorems. The Journal of Symbolic Logic, vol. 59 (1994), no. 4, pp. 14141419.CrossRefGoogle Scholar
Kotlarski, H., Other proofs of old results. Mathematical Logic Quarterly, vol. 44 (1998), pp. 474480.CrossRefGoogle Scholar
Kotlarski, H., The incompleteness theorems after 70 years. Annals of Pure and Applied Logic, vol. 126 (2004), no. 1–3, pp. 125138.CrossRefGoogle Scholar
Kreisel, G., Note on arithmetic models for consistent formulae of the predicate calculus. Fundamenta Mathematicae, vol. 37 (1950), pp. 265285.CrossRefGoogle Scholar
Kreisel, G., On weak completeness of intuitionistic predicate logic. The Journal of Symbolic Logic, vol. 27 (1962), pp. 139158.CrossRefGoogle Scholar
Kreisel, G., A survey of proof theory. The Journal of Symbolic Logic, vol. 33 (1968), pp. 321388.CrossRefGoogle Scholar
Kritchman, S. and Raz, R., The surprise examination paradox and the second incompleteness theorem. Notices of the American Mathematical Society, vol. 57 (2010), no. 11, pp. 14541458.Google Scholar
Leach-Krouse, G., Yablifying the Rosser sentence. Journal of Philosophical Logic, vol. 43 (2014), pp. 827834.CrossRefGoogle Scholar
Kurahashi, T., Rosser-type undecidable sentences based on Yablo’s paradox. Journal of Philosophical Logic, vol. 43 (2014), pp. 9991017.CrossRefGoogle Scholar
Kurahashi, T., Arithmetical completeness theorem for modal logic. $\boldsymbol{K}$ . Studia Logica, vol. 106 (2018), no. 2, pp. 219235.CrossRefGoogle Scholar
Kurahashi, T., Arithmetical soundness and completeness for $\ {\varSigma}_2$ numerations. Studia Logica, vol. 106 (2018), no. 6, pp. 11811196.CrossRefGoogle Scholar
Kurahashi, T., A note on derivability conditions. The Journal of Symbolic Logic, 2020, to appear, doi:10.1017/jsl.2020.33.CrossRefGoogle Scholar
Kurahashi, T., Rosser provability and the second incompleteness theorem. Symposium on Advances in Mathematical Logic 2018 Proceedings , to appear.Google Scholar
Li, M. and Vitányi, P. M. B., Kolmogorov complexity and its applications, Handbook of Theoretical Computer Science (van Leeuwen, J., editor), Elsevier, Amsterdam, 1990, pp. 187254.Google Scholar
Lindström, P., Aspects of Incompleteness, Lecture Notes in Logic, vol. 10, Cambridge University Press, Cambridge, 2017.Google Scholar
Löb, M. H., Solution of a problem of Leon Henkin. The Journal of Symbolic Logic, vol. 20 (1955), no. 2, pp. 115118.CrossRefGoogle Scholar
Mills, G., A tree analysis of unprovable combinatorial statements. Model Theory of Algebra and Arithmetic, Lecture Notes in Mathematics, vol. 834, Springer, Berlin, 1980, pp. 248311.CrossRefGoogle Scholar
Montagna, F., On the formulas of Peano arithmetic which are provably closed under modus ponens. Bollettino dell’Unione Matematica Italiana, vol. 16 (1979), no. B5, pp. 196211.Google Scholar
Mostowski, A., A generalization of the incompleteness theorem. Fundamenta Mathematicae, vol. 49 (1961), pp. 205232.CrossRefGoogle Scholar
Mostowski, A., Thirty years of foundational studies: Lectures on the development of mathematical logic and the study of the foundations of mathematics in 1930–1964. Acta Philosophica Fennica, vol. 17 (1965), pp. 1180.Google Scholar
Murawski, R., Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel’s Theorems, Synthese Library, vol. 286, Springer, Amsterdam, 2013.Google Scholar
Nelson, E., Predicative Arithmetic, Mathematical Notes, Princeton University Press, Princeton, NJ, 2014.Google Scholar
Niebergall, K. G., Natural representations and extensions of Gödel’s second theorem, Logic Colloquium 01 (Baaz, M., Friedman, S. D., and Krajĺček, J., editors), Lecture Notes in Logic, vol. 20, The Association for Symbolic Logic, 2005, pp. 350368.CrossRefGoogle Scholar
Odifreddi, P., Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers, Elsevier, Amsterdam, 1992.Google Scholar
Pacholski, L. and Wierzejewski, J., Model Theory of Algebra and Arithmetic, Lecture Notes in Mathematics, vol. 834, Springer, Berlin, 1980.CrossRefGoogle Scholar
Pakhomov, F., A weak set theory that proves its own consistency, preprint, 2019, arXiv:1907.00877v2.Google Scholar
Paris, J. and Harrington, L., A mathematical incompleteness in Peano arithmetic. Handbook of Mathematical Logic (Barwise, J., editor), Studies in Logic and Foundations of Mathematics, vol. 90, Elsevier, Amsterdam, 1982, pp. 11331142.CrossRefGoogle Scholar
Paris, J. and Kirby, L., Accessible independence results for Peano arithmetic. The Bulletin of the London Mathematical Society, vol. 14 (1982), no. 4, pp. 285293.Google Scholar
Pour-El, M. B. and Kripke, S., Deduction-preserving “recursive isomorphisms” between theories. Fundamenta Mathematicae, vol. 61 (1967), pp. 141163.CrossRefGoogle Scholar
Priest, G., Yablo’s paradox. Analysis, vol. 57 (1997), no. 4, pp. 236242.CrossRefGoogle Scholar
Pudlák, P., Another combinatorial principle independent of Peano’s axioms, unpublished manuscript, 1979.Google Scholar
Pudlák, P., Cuts, consistency statements and interpretations. The Journal of Symbolic Logic, vol. 50 (1985), pp. 423441.CrossRefGoogle Scholar
Pudlák, P., Incompleteness in the finite domain. The Bulletin of Symbolic Logic, vol. 23 (2017), no. 4, pp. 405441.CrossRefGoogle Scholar
Robinson, A., On languages which are based on non-standard arithmetic. Nagoya Mathematical Journal, vol. 22 (1963), pp. 83117.CrossRefGoogle Scholar
Rosser, J. B., Extensions of some theorems of Gödel and Church. The Journal of Symbolic Logic, vol. 1 (1936), no. 3, pp. 8791.CrossRefGoogle Scholar
Russell, B., Mathematical logic as based on the theory of types. American Journal of Mathematics, vol. 30 (1908), pp. 222262.CrossRefGoogle Scholar
Salehi, S. and Seraji, P., Gödel–Rosser’s incompleteness theorem, generalized and optimized for definable theories. Journal of Logic and Computation, vol. 27 (2017), no. 5, pp. 13911397.Google Scholar
Salehi, S. and Seraji, P., On constructivity and the Rosser property: A closer look at some Gödelean proofs. Annals of Pure and Applied Logic, vol. 169 (2018), pp. 971980.CrossRefGoogle Scholar
Simpson, S. G., Harvey Friedman&s Research on the Foundations of Mathematics, Studies in Logic and the Foundations of Mathematics, vol. 117, Elsevier, Amsterdam, 1985.Google Scholar
Simpson, S. G. (ed.), Logic and Combinatorics, Contemporary Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1987.Google Scholar
Simpson, S. G., Subsystems of Second-Order Arithmetic, Perspectives in Logic, vol. 1, Cambridge University Press, Cambridge, 2009.Google Scholar
Smith, P., An Introduction to Gödel’s Theorems, Cambridge University Press, Cambridge, 2013.CrossRefGoogle Scholar
Smoryński, C., The incompleteness theorems, Handbook of Mathematical Logic (Barwise, J., editor), Elsevier, Amsterdam, 1982, pp. 821865.Google Scholar
Smullyan, R. M., Gödel’s Incompleteness Theorems, Oxford Logic Guides, vol. 19, Oxford University Press, Oxford, 1992.Google Scholar
Smullyan, R. M., Diagnolisation and Self-Reference, Oxford Logic Guides, vol. 27, Clarendon Press, Oxford, 1994.Google Scholar
Solovay, R. M., Provability interpretations of modal logic. Israel Journal of Mathematics, vol. 25 (1976), pp. 287304.CrossRefGoogle Scholar
Švejdar, V., An interpretation of Robinson arithmetic in its Grzegorczyk’s weaker variant. Fundamenta Informaticae, vol. 81 (2007), no. 1–3, pp. 347354.Google Scholar
Tarski, A. and Givant, S., Tarski’s system of geometry. The Bulletin of Symbolic Logic, vol. 5 (1999), no. 2, pp. 175214.CrossRefGoogle Scholar
Tarski, A., Mostowski, A., and Robinson, R. M., Undecidabe Theories, Studies in Logic and the Foundations of Mathematics, vol. 13, Elsevier, Amsterdam, 1953.Google Scholar
Turing, A., Systems of logic based on ordinals. Proceedings of the London Mathematical Society, vol. 45 (1939), pp. 161228.CrossRefGoogle Scholar
Vaught, R. L., On a theorem of Cobham concerning undecidable theories, Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of Science (Nagel, E. Suppes, P., and Tarski, P., editors), Stanford University Press, Stanford, 1962, pp. 1425.Google Scholar
Visser, A., The provability logics of recursively enumerable theories extending Peano arithmetic at arbitrary theories extending Peano arithmetic. Journal of Philosophical Logic, vol. 13 (1984), no. 2, pp. 181212.CrossRefGoogle Scholar
Visser, A., Growing commas: A study of sequentiality and concatenation. Notre Dame Journal of Formal Logic, vol. 50 (2009), no. 1, pp. 6185.CrossRefGoogle Scholar
Visser, A., Can we make the second incompleteness theorem coordinate free? Journal of Logic and Computation, vol. 21 (2011), no. 4, pp. 543560.CrossRefGoogle Scholar
Visser, A., Why the theory R is special. Foundational Adventures: Essay in Honour of Harvey Friedman, College Publications, 2014, pp. 723.Google Scholar
Visser, A., On Q . Soft Computing, vol. 21 (2016), pp. 3956.CrossRefGoogle Scholar
Visser, A., The second incompleteness theorem: Reflections and ruminations, Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge (Horsten, L. and Welch, P., editors), Oxford University Press, Oxford, 2016, pp. 6791.CrossRefGoogle Scholar
Visser, A., The interpretation existence lemma. Feferman on Foundations: Logic, Mathematics, Philosophy, Outstanding Contributions to Logic, vol. 13, Springer, Cham, Switzerland, 2018, pp. 101144.CrossRefGoogle Scholar
Visser, A., From Tarski to Gödel: Or, how to derive the second incompleteness theorem from the undefinability of truth without self-reference. Journal of Logic and Computation, vol. 29 (2019), no. 5, pp. 595604.CrossRefGoogle Scholar
Visser, A., Another look at the second incompleteness theorem. Review of Symbolic Logic, vol. 13 (2020), no. 2, pp. 269295.CrossRefGoogle Scholar
Vopěnka, P., A new proof of Gödel’s result on non-provability of consistency. Bulletin del’Académie Polonaise des Sciences. Série des Sciences Mathématiques. Astronomiques et Physiques, vol. 14 (1966), pp. 111116.Google Scholar
Wang, H., Undecidable sentences generated by semantic paradoxes. Journal of Symbolic Logic, vol. 20 (1955), no. 1, pp. 3143.CrossRefGoogle Scholar
Weiermann, A., An application of graphical enumeration to PA. Journal of Symbolic Logic, vol. 68 (2003), no. 1, pp. 516.Google Scholar
Weiermann, A., A classification of rapidly growing Ramsey functions. Proceedings of the American Mathematical Society, vol. 132 (2004), pp. 553561.CrossRefGoogle Scholar
Weiermann, A., Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results. Annals of Pure and Applied Logic, vol. 136 (2005), pp. 189218.CrossRefGoogle Scholar
Weiermann, A., Classifying the provably total functions of PA, this Journal, vol. 12 (2006), no. 2, pp. 177190.Google Scholar
Weiermann, A., Phase transition thresholds for some Friedman-style independence results. Mathematical Logic Quarterly, vol. 53 (2007), no. 1, pp. 418.CrossRefGoogle Scholar
Willard, D. E., Self-verifying axiom systems, the incompleteness theorem and related reflection principles. Journal of Symbolic Logic, vol. 66 (2001), no. 2, pp. 536596.CrossRefGoogle Scholar
Willard, D. E., A generalization of the second incompleteness theorem and some exceptions to it. Annals of Pure and Applied Logic, vol. 141 (2006), no. 3, pp. 472496.CrossRefGoogle Scholar
Yablo, S., Paradox without self-reference. Analysis, vol. 53 (1993), no. 4, pp. 251252.CrossRefGoogle Scholar
Zach, R., Hilbert’s program then and now. Philosophy of Logic, Handbook of the Philosophy of Science, Elsevier, Amsterdam, 2006, pp. 411447.Google Scholar