Published online by Cambridge University Press: 15 January 2014
This article investigates the weak distributivity of Boolean σ-algebras satisfying the countable chain condition. It addresses primarily the question when such algebras carry a σ-additive measure. We use as a starting point the problem of John von Neumann stated in 1937 in the Scottish Book. He asked if the countable chain condition and weak distributivity are sufficient for the existence of such a measure.
Subsequent research has shown that the problem has two aspects: one set theoretic and one combinatorial. Recent results provide a complete solution of both the set theoretic and the combinatorial problems. We shall survey the history of von Neumann's Problem and outline the solution of the set theoretic problem. The technique that we describe owes much to the early work of Dorothy Maharam to whom we dedicate this article.
§1. Complete Boolean algebras and weak distributivity. A Boolean algebra is a set B with Boolean operations a ˅ b (join), a ˄ b (meet) and −a (complement), partial ordering a ≤ b defined by a ˄ b = a and the smallest and greatest element, 0 and 1. By Stone's Representation Theorem, every Boolean algebra is isomorphic to an algebra of subsets of some nonempty set S, under operations a ∪ b, a ∩ b, S − a, ordered by inclusion, with 0 = ∅ and 1 = S.
Complete Boolean algebras and weak distributivity.A Boolean algebra is a set B with Boolean operations a ˅ b (join), a ˄ b (meet) and -a (complement), partial ordering a ≤ b defined by a ˄ b = a and the smallest and greatest element. 0 and 1. By Stone's Representation Theorem, every Boolean algebra is isomorphic to an algebra of subsets of some nonempty set S, under operations a ∪ b, a ∩ b, S -a, ordered by inclusion, with 0 = ϕ and 1 = S.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.