No CrossRef data available.
Published online by Cambridge University Press: 30 June 2025
We give a unified overview of the study of the effects of additional set theoretic axioms on quotient structures. Our focus is on rigidity, measured in terms of existence (or rather non-existence) of suitably non-trivial automorphisms of the quotients in question. A textbook example for the study of this topic is the Boolean algebra  $\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$, whose behavior is the template around which this survey revolves: Forcing axioms imply that all of its automorphisms are trivial, in the sense that they are induced by almost permutations of
$\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$, whose behavior is the template around which this survey revolves: Forcing axioms imply that all of its automorphisms are trivial, in the sense that they are induced by almost permutations of  ${\mathbb N}$, while under the Continuum Hypothesis this rigidity fails and
${\mathbb N}$, while under the Continuum Hypothesis this rigidity fails and  $\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$ admits uncountably many non-trivial automorphisms. We consider far-reaching generalisations of this phenomenon and present a wide variety of situations where analogous patterns persist, focusing mainly (but not exclusively) on the categories of Boolean algebras, Čech–Stone remainders, and
$\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$ admits uncountably many non-trivial automorphisms. We consider far-reaching generalisations of this phenomenon and present a wide variety of situations where analogous patterns persist, focusing mainly (but not exclusively) on the categories of Boolean algebras, Čech–Stone remainders, and  $\mathrm {C}^{*}$-algebras. We survey the state of the art and the future prospects of this field, discussing the major open problems and outlining the main ideas of the proofs whenever possible.
$\mathrm {C}^{*}$-algebras. We survey the state of the art and the future prospects of this field, discussing the major open problems and outlining the main ideas of the proofs whenever possible.
 $\mathcal{L}_{\infty }$
-space that solves the scalar-plus-compact problem
. 
Acta Mathematica
, vol. 206 (2011), no. 1, pp. 1–54.CrossRefGoogle Scholar
$\mathcal{L}_{\infty }$
-space that solves the scalar-plus-compact problem
. 
Acta Mathematica
, vol. 206 (2011), no. 1, pp. 1–54.CrossRefGoogle Scholar ${}^{++}$
 implies Woodin’s axiom (*). 
Annals of Mathematics
, vol. 193 (2021), no. 3, pp. 793–835.CrossRefGoogle Scholar
${}^{++}$
 implies Woodin’s axiom (*). 
Annals of Mathematics
, vol. 193 (2021), no. 3, pp. 793–835.CrossRefGoogle Scholar ${m}^{\ast }$
. II. 
Bulletin de l’Académie Polonaise des Sciences
, vol. 26 (1978), no. 6, pp. 521–523.Google Scholar
${m}^{\ast }$
. II. 
Bulletin de l’Académie Polonaise des Sciences
, vol. 26 (1978), no. 6, pp. 521–523.Google Scholar ${\boldsymbol{C}}^{\ast}$
-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III
, volume 122 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2006.Google Scholar
${\boldsymbol{C}}^{\ast}$
-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III
, volume 122 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2006.Google Scholar $P\left(\omega \right)$
/fin
. 
Israel Journal of Mathematics
, vol. 233 (2019), no. 1, pp. 453–500.CrossRefGoogle Scholar
$P\left(\omega \right)$
/fin
. 
Israel Journal of Mathematics
, vol. 233 (2019), no. 1, pp. 453–500.CrossRefGoogle Scholar $\left(\mathbb{N}\right)/ Fin$
 know its right hand from its left? preprint, 2024. arXiv preprint arXiv:2402.04358.Google Scholar
$\left(\mathbb{N}\right)/ Fin$
 know its right hand from its left? preprint, 2024. arXiv preprint arXiv:2402.04358.Google Scholar $\left(\mathbb{N}\right)/ Fin$
. 
Transactions of the American Mathematical Society
, to appear 2024, arXiv:2410.08789.Google Scholar
$\left(\mathbb{N}\right)/ Fin$
. 
Transactions of the American Mathematical Society
, to appear 2024, arXiv:2410.08789.Google Scholar $A$
from
$A$
from 
 $M(A)$
and related matters
. 
Comptes Rendus Math´ematiques de l’Acad´emie des Sciences
, vol. 10 (1988), no. 6, 273–278.Google Scholar
$M(A)$
and related matters
. 
Comptes Rendus Math´ematiques de l’Acad´emie des Sciences
, vol. 10 (1988), no. 6, 273–278.Google Scholar ${C}^{\ast }$
-algebras
, 
Proceedings of a Conference on Operator Theory
, volume 345 of Lecture Notes in Mathematics, Springer, Berlin and New York, 1973, pp. 58–128.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
, 
Proceedings of a Conference on Operator Theory
, volume 345 of Lecture Notes in Mathematics, Springer, Berlin and New York, 1973, pp. 58–128.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras and K-homology
. 
Annals of Mathematics
, vol. 105 (1977), pp. 265–324.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras and K-homology
. 
Annals of Mathematics
, vol. 105 (1977), pp. 265–324.CrossRefGoogle Scholar ${\omega}_0^{\ast }$
. 
Topology and its Applications
, vol. 213 (2016), pp. 230–237.CrossRefGoogle Scholar
${\omega}_0^{\ast }$
. 
Topology and its Applications
, vol. 213 (2016), pp. 230–237.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras need not be *-isomorphic
. 
Bulletin of the London Mathematical Society
, vol. 15 (1983), no. 6, pp. 604–610.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras need not be *-isomorphic
. 
Bulletin of the London Mathematical Society
, vol. 15 (1983), no. 6, pp. 604–610.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. 
Acta Mathematica
, vol. 208 (2012), no. 1, pp. 93–150.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. 
Acta Mathematica
, vol. 208 (2012), no. 1, pp. 93–150.CrossRefGoogle Scholar $\beta N\setminus N$
. 
Proceedings of the American Mathematical Society
, vol. 142 (2014), no. 8, pp. 2907–2913.CrossRefGoogle Scholar
$\beta N\setminus N$
. 
Proceedings of the American Mathematical Society
, vol. 142 (2014), no. 8, pp. 2907–2913.CrossRefGoogle Scholar $P\left(\omega \right)/\textit{fin}$
and large continuum
. 
Annals of Pure and Applied Logic
, vol. 176 (2025), no. 10, p. 103627.CrossRefGoogle Scholar
$P\left(\omega \right)/\textit{fin}$
and large continuum
. 
Annals of Pure and Applied Logic
, vol. 176 (2025), no. 10, p. 103627.CrossRefGoogle Scholar ${\omega}^{\ast }$
 has (almost) no continuous images
. 
Israel Journal of Mathematics
, vol. 109 (1999), pp. 29–39.CrossRefGoogle Scholar
${\omega}^{\ast }$
 has (almost) no continuous images
. 
Israel Journal of Mathematics
, vol. 109 (1999), pp. 29–39.CrossRefGoogle Scholar $\mathbb{N}$
and of
$\mathbb{N}$
and of
 
 $\mathbb{R}$
, 
Encyclopedia of General Topology
 (Hart, K. P., Nagata, J., and Vaughan, J.E., editors), Elsevier Science Publishers B.V., Amsterdam, 2004, 213–217.Google Scholar
$\mathbb{R}$
, 
Encyclopedia of General Topology
 (Hart, K. P., Nagata, J., and Vaughan, J.E., editors), Elsevier Science Publishers B.V., Amsterdam, 2004, 213–217.Google Scholar $\beta N\setminus N$
. 
Topology and its Applications
, vol. 122 (2002), nos. 1–2, pp. 105–133.CrossRefGoogle Scholar
$\beta N\setminus N$
. 
Topology and its Applications
, vol. 122 (2002), nos. 1–2, pp. 105–133.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. 
Journal of Functional Analysis
, vol. 269 (2015), no. 8, pp. 2631–2664.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. 
Journal of Functional Analysis
, vol. 269 (2015), no. 8, pp. 2631–2664.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras. II
. 
Annals of Mathematics
, vol. 100 (1974), no. 2, pp. 407–422.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras. II
. 
Annals of Mathematics
, vol. 100 (1974), no. 2, pp. 407–422.CrossRefGoogle Scholar $\beta \mathbb{N}$
-spaces
. 
Topology and its Applications
, vol. 125 (2002), pp. 279–297.CrossRefGoogle Scholar
$\beta \mathbb{N}$
-spaces
. 
Topology and its Applications
, vol. 125 (2002), pp. 279–297.CrossRefGoogle Scholar $\left(\mathbb{N}\right)/$
are there?
 
Illinois Journal of Mathematics
, vol. 46 (2003), pp. 999–1033.Google Scholar
$\left(\mathbb{N}\right)/$
are there?
 
Illinois Journal of Mathematics
, vol. 46 (2003), pp. 999–1033.Google Scholar ${\boldsymbol{C}}^{\ast}$
-algebras
, Springer Monographs in Mathematics, Springer-Verlag, New York, 2019.Google Scholar
${\boldsymbol{C}}^{\ast}$
-algebras
, Springer Monographs in Mathematics, Springer-Verlag, New York, 2019.Google Scholar ${C}^{\ast }$
-algebras
. 
Proceedings of the London Mathematical Society
, to appear.Google Scholar
${C}^{\ast }$
-algebras
. 
Proceedings of the London Mathematical Society
, to appear.Google Scholar ${C}^{\ast }$
-algebras
. 
Memoirs of the American Mathematical Society
, vol. 271 (2021), no. 1324, pp. viii+127.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. 
Memoirs of the American Mathematical Society
, vol. 271 (2021), no. 1324, pp. viii+127.CrossRefGoogle Scholar ${\aleph}_1$
-universal
. 
Israel Journal of Mathematics
, vol. 237 (2020), pp. 287–309.CrossRefGoogle Scholar
${\aleph}_1$
-universal
. 
Israel Journal of Mathematics
, vol. 237 (2020), pp. 287–309.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras. preprint, 2024. arXiv preprint arXiv:2411.02274.Google Scholar
${C}^{\ast }$
-algebras. preprint, 2024. arXiv preprint arXiv:2411.02274.Google Scholar ${C}^{\ast }$
-algebra invariants
. 
International Mathematics Research Notices
, vol. 22 (2013), pp. 5196–5226. Appendix with C. Eckhardt.CrossRefGoogle Scholar
${C}^{\ast }$
-algebra invariants
. 
International Mathematics Research Notices
, vol. 22 (2013), pp. 5196–5226. Appendix with C. Eckhardt.CrossRefGoogle Scholar $P\left(\omega \right)/$
fin. preprint, 2010. https://www.math.uni-hamburg.de/home/geschke/papers/ShiftvsInverseQuotientsOfSymGroup.pdf
Google Scholar
$P\left(\omega \right)/$
fin. preprint, 2010. https://www.math.uni-hamburg.de/home/geschke/papers/ShiftvsInverseQuotientsOfSymGroup.pdf
Google Scholar ${\aleph}_1$
 Mengen. 
Fundamenta Mathematicae
, vol. 26 (1936), pp. 241–255.CrossRefGoogle Scholar
${\aleph}_1$
 Mengen. 
Fundamenta Mathematicae
, vol. 26 (1936), pp. 241–255.CrossRefGoogle Scholar $P$
-subsets of
$P$
-subsets of 
 ${\omega}^{\ast }$
. 
Proceedings of the American Mathematical Society
, vol. 106 (1989), pp. 1145–1146.Google Scholar
${\omega}^{\ast }$
. 
Proceedings of the American Mathematical Society
, vol. 106 (1989), pp. 1145–1146.Google Scholar ${\left({\omega}^{\ast}\right)}^{n+1}$
is not always a continuous image of
${\left({\omega}^{\ast}\right)}^{n+1}$
is not always a continuous image of 
 ${\left({\omega}^{\ast}\right)}^n$
. 
Fundamenta Mathematicae
, vol. 132 (1989), pp. 59–72.CrossRefGoogle Scholar
${\left({\omega}^{\ast}\right)}^n$
. 
Fundamenta Mathematicae
, vol. 132 (1989), pp. 59–72.CrossRefGoogle Scholar $\mathcal{P}(\omega )/I$
. 
Transactions of the American Mathematical Society
, vol. 285 (1984), pp. 411–429.Google Scholar
$\mathcal{P}(\omega )/I$
. 
Transactions of the American Mathematical Society
, vol. 285 (1984), pp. 411–429.Google Scholar $\varepsilon$
-representations
. 
Israel Journal of Mathematics
, vol. 43 (1982), no. 4, pp. 315–323.CrossRefGoogle Scholar
$\varepsilon$
-representations
. 
Israel Journal of Mathematics
, vol. 43 (1982), no. 4, pp. 315–323.CrossRefGoogle Scholar $\mathcal{P}(\lambda )/{[\lambda ]}^{<\lambda }$
, for
$\mathcal{P}(\lambda )/{[\lambda ]}^{<\lambda }$
, for 
 $\lambda$
 inaccessible. preprint, 2024. arXiv preprint arXiv:2411.11577.CrossRefGoogle Scholar
$\lambda$
 inaccessible. preprint, 2024. arXiv preprint arXiv:2411.11577.CrossRefGoogle Scholar $\mathcal{P}(\lambda )/{[\lambda ]}^{<\lambda }$
. 
The Journal of Symbolic Logic
, vol. 4 (2024), pp. 1–37.Google Scholar
$\mathcal{P}(\lambda )/{[\lambda ]}^{<\lambda }$
. 
The Journal of Symbolic Logic
, vol. 4 (2024), pp. 1–37.Google Scholar $\left\langle \unicode{x3ba}, {\unicode{x3bb}}^{\ast}\right\rangle$
-gaps under MA, handwritten notes, preprint, 1976.Google Scholar
$\left\langle \unicode{x3ba}, {\unicode{x3bb}}^{\ast}\right\rangle$
-gaps under MA, handwritten notes, preprint, 1976.Google Scholar $\mathcal{P}(\lambda )/{}_{\kappa }$
. 
Fundamenta Mathematicae
, vol. 233 (2016), pp. 271–291.Google Scholar
$\mathcal{P}(\lambda )/{}_{\kappa }$
. 
Fundamenta Mathematicae
, vol. 233 (2016), pp. 271–291.Google Scholar ${F}_{\sigma }$
-ideals and
${F}_{\sigma }$
-ideals and 
 ${\omega}_1{\omega}_1^{\ast }$
-gaps in the Boolean algebra
${\omega}_1{\omega}_1^{\ast }$
-gaps in the Boolean algebra 
 $\left(\omega \right)/I$
. 
Fundamenta Mathematicae
, vol. 138 (1991), pp. 103–111.CrossRefGoogle Scholar
$\left(\omega \right)/I$
. 
Fundamenta Mathematicae
, vol. 138 (1991), pp. 103–111.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. 
Proceedings of the Royal Society of Edinburgh Section A: Mathematics
, vol. 149 (2019), no. 1, pp. 45–59.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. 
Proceedings of the Royal Society of Edinburgh Section A: Mathematics
, vol. 149 (2019), no. 1, pp. 45–59.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. 
Journal of Mathematical Logic
, vol. 21 (2021), no. 2, p. 2150006. 7.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. 
Journal of Mathematical Logic
, vol. 21 (2021), no. 2, p. 2150006. 7.CrossRefGoogle Scholar $\beta \omega$
, 
Handbook of Set-Theoretic Topology
 (Kunen, K. and Vaughan, J., editors), North-Holland, Amsterdam, 1984, pp. 503–560.CrossRefGoogle Scholar
$\beta \omega$
, 
Handbook of Set-Theoretic Topology
 (Kunen, K. and Vaughan, J., editors), North-Holland, Amsterdam, 1984, pp. 503–560.CrossRefGoogle Scholar $\mathcal{P}(\omega )\mathcal{I}/\mathcal{I}$
, Borel
. 
The Journal of Symbolic Logic
, vol. 69 (2004), no. 3,pp. 799–816.CrossRefGoogle Scholar
$\mathcal{P}(\omega )\mathcal{I}/\mathcal{I}$
, Borel
. 
The Journal of Symbolic Logic
, vol. 69 (2004), no. 3,pp. 799–816.CrossRefGoogle Scholar $\aleph$
. 
Soviet Mathematics Doklady
, vol. 4 (1963), pp. 592–592.Google Scholar
$\aleph$
. 
Soviet Mathematics Doklady
, vol. 4 (1963), pp. 592–592.Google Scholar ${C}^{\ast }$
-algebras, contributions to non-commuttative topology
. 
Journal of Operator Theory
, vol. 15 (1986), no. 1, pp. 15–32.Google Scholar
${C}^{\ast }$
-algebras, contributions to non-commuttative topology
. 
Journal of Operator Theory
, vol. 15 (1986), no. 1, pp. 15–32.Google Scholar ${}^{\ast}$
Algebras
, Number 49 in London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2000.Google Scholar
${}^{\ast}$
Algebras
, Number 49 in London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2000.Google Scholar ${C}^{\ast }$
-algebras arising from crossed products. 
Ergodic Theory and Dynamical Systems
, vol. 32 (2012), pp. 273–293.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras arising from crossed products. 
Ergodic Theory and Dynamical Systems
, vol. 32 (2012), pp. 273–293.CrossRefGoogle Scholar ${\boldsymbol{C}}^{\ast}$
-Algebras. Entropy in Operator Algebras
, volume 126 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2002. Operator Algebras and Non-commutative Geometry, 7.Google Scholar
${\boldsymbol{C}}^{\ast}$
-Algebras. Entropy in Operator Algebras
, volume 126 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2002. Operator Algebras and Non-commutative Geometry, 7.Google Scholar ${C}^{\ast }$
-algebras. 
Journal of Functional Analysis
, vol. 2 (1968), pp. 202–206.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras. 
Journal of Functional Analysis
, vol. 2 (1968), pp. 202–206.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras. II. 
Bulletin de la Société Mathématique de France
, vol. 99 (1971), pp. 259–263.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras. II. 
Bulletin de la Société Mathématique de France
, vol. 99 (1971), pp. 259–263.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras, III. 
Tohoku Mathematical Journal
, vol. 23 (1971), no. 3, pp. 559–564.Google Scholar
${C}^{\ast }$
-algebras, III. 
Tohoku Mathematical Journal
, vol. 23 (1971), no. 3, pp. 559–564.Google Scholar ${\mathbf{lim}^{\boldsymbol{1}}}$
for Infinite Abelian Groups
, 
vol.
 1, New York Journal of Mathematics; NYJM Monographs, 2003.Google Scholar
${\mathbf{lim}^{\boldsymbol{1}}}$
for Infinite Abelian Groups
, 
vol.
 1, New York Journal of Mathematics; NYJM Monographs, 2003.Google Scholar $C(X)$
. 
The Quarterly Journal of Mathematics
, vol. 50 (1999), no. 197, pp. 87–109.CrossRefGoogle Scholar
$C(X)$
. 
The Quarterly Journal of Mathematics
, vol. 50 (1999), no. 197, pp. 87–109.CrossRefGoogle Scholar $\beta \mathbb{N}\setminus \mathbb{N}$
without the continuum hypothesis
. 
Fundamenta Mathematicae
, vol. 132 (1989), pp. 135–141.CrossRefGoogle Scholar
$\beta \mathbb{N}\setminus \mathbb{N}$
without the continuum hypothesis
. 
Fundamenta Mathematicae
, vol. 132 (1989), pp. 135–141.CrossRefGoogle Scholar $\mathcal{P}(\mathbb{N})/{\left[\mathbb{N}\right]}^{<{\aleph}_0}$
from variants of small dominating number. 
European Journal of Mathematics
, vol. 1 (2015), no. 3, pp. 534–544.CrossRefGoogle Scholar
$\mathcal{P}(\mathbb{N})/{\left[\mathbb{N}\right]}^{<{\aleph}_0}$
from variants of small dominating number. 
European Journal of Mathematics
, vol. 1 (2015), no. 3, pp. 534–544.CrossRefGoogle Scholar $\mathcal{P}(\kappa )/{\left[\kappa \right]}^{<{\aleph}_0}$
 
are trivial off a small set
. 
Fundamenta Mathematicae
, vol. 235 (2016), pp. 167–181.Google Scholar
$\mathcal{P}(\kappa )/{\left[\kappa \right]}^{<{\aleph}_0}$
 
are trivial off a small set
. 
Fundamenta Mathematicae
, vol. 235 (2016), pp. 167–181.Google Scholar $\mathcal{P}(\mathbb{N})/{\left[\mathbb{N}\right]}^{<{\aleph}_0}$
from variants of small dominating number”
. 
European Journal of Mathematics
, vol. 11 (2025), no. 2, pp. 1–19.Google Scholar
$\mathcal{P}(\mathbb{N})/{\left[\mathbb{N}\right]}^{<{\aleph}_0}$
from variants of small dominating number”
. 
European Journal of Mathematics
, vol. 11 (2025), no. 2, pp. 1–19.Google Scholar $\boldsymbol{\omega}$
* and automorphisms of P(
$\boldsymbol{\omega}$
* and automorphisms of P(
 $\boldsymbol{\omega}$
)/fin that preserve or invert the shift
. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2016.Google Scholar
$\boldsymbol{\omega}$
)/fin that preserve or invert the shift
. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2016.Google Scholar $K$
-homology theory. 
Journal of Functional Analysis
, vol.~257 (2009), no. 1, pp. 88–121.CrossRefGoogle Scholar
$K$
-homology theory. 
Journal of Functional Analysis
, vol.~257 (2009), no. 1, pp. 88–121.CrossRefGoogle Scholar $\beta \omega -\omega$
 
implies CH
. 
Proceedings of the American Mathematical Society
, vol. 72 (1978), no. 3, pp. 539–541.Google Scholar
$\beta \omega -\omega$
 
implies CH
. 
Proceedings of the American Mathematical Society
, vol. 72 (1978), no. 3, pp. 539–541.Google Scholar $\mathcal{P}(\omega )/ Fin$
. 
Topology and its Applications
, vol. 49 (1992), pp. 1–13.CrossRefGoogle Scholar
$\mathcal{P}(\omega )/ Fin$
. 
Topology and its Applications
, vol. 49 (1992), pp. 1–13.CrossRefGoogle Scholar $\mathcal{P}(\omega )/ Fin$
. 
Proceedings of the American Mathematical Society
, vol. 96 (1986), pp. 130–135.Google Scholar
$\mathcal{P}(\omega )/ Fin$
. 
Proceedings of the American Mathematical Society
, vol. 96 (1986), pp. 130–135.Google Scholar ${}^{+++}$
, and generic absoluteness for the theory of strong forcing axioms. 
Journal of the American Mathematical Society
, vol. 29 (2016), no. 3, pp. 675–728.CrossRefGoogle Scholar
${}^{+++}$
, and generic absoluteness for the theory of strong forcing axioms. 
Journal of the American Mathematical Society
, vol. 29 (2016), no. 3, pp. 675–728.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
, 
ICM—International Congress of Mathematicians
, 
vol. 4
, Sections 5–8 (D. Beliaev and S. Smirnov, editors), EMS Press, Berlin, 2023, pp. 3314–3338.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
, 
ICM—International Congress of Mathematicians
, 
vol. 4
, Sections 5–8 (D. Beliaev and S. Smirnov, editors), EMS Press, Berlin, 2023, pp. 3314–3338.CrossRefGoogle Scholar