Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-26T11:14:50.323Z Has data issue: false hasContentIssue false

Temperature and relative humidity mediated life processes of Spodoptera species (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  30 September 2024

Rameswor Maharjan
Affiliation:
Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, 50424 Miryang, Republic of Korea
Seoyeon Hong*
Affiliation:
Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, 50424 Miryang, Republic of Korea
Youngnam Yoon
Affiliation:
Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, 50424 Miryang, Republic of Korea
Yunwoo Jang
Affiliation:
Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, 50424 Miryang, Republic of Korea
Kido Park
Affiliation:
Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, 50424 Miryang, Republic of Korea Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 16608 Suwon, Republic of Korea
*
Corresponding author: Seoyeon Hong; Email: agriculture63@korea.kr

Abstract

Anthropogenic-mediated climate change is expected to negatively affect pest management in agriculture. Hence, we investigated the oviposition, immature mortality, and developmental processes of Spodoptera species (Spodoptera exigua (Hübner) and Spodoptera litura (Fabricius)) under different temperatures (20, 25, and 30°C) and relative humidity (RH) (30–35, 50–55, 70–75, and 90–95%) conditions. For fecundity, mouths of each Spodoptera species were released into a rectangular box whose inner walls were covered with a sheet of white paper for each combination of temperature and RH. The mouths were kept inside the box to deposit eggs for 72 h. Temperature and RH significantly affected the fecundity, with the maximum number of eggs laid in 70–75% at 30°C. The highest egg and larval mortalities were recorded in 30–35 and 90–95% RH, respectively. Temperature and RH greatly affected the developmental period (egg–adult) and adult emergence rate. The rapid development was recorded in 70–75% RH at 30°C. Higher number of adults was found with an increase in temperature and RH. Adult longevity was significantly higher in 70–75% RH at 20°C. Based on the present study's findings, temperature and RH had an individual apparent effect on the developmental processes of Spodoptera species instead of an interactive effect. Therefore, there is need for an in-depth study of the influence of several climatic factors, including CO2, on the developmental modality and demographic changes of Spodoptera species to assess the impacts of climatic components and the sustainable development of management strategies.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmad, M and Arif, MI (2010) Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan organophosphorus and pyrethroid insecticides in Pakistan. Crop Protection 29, 14281433.CrossRefGoogle Scholar
Ali, A and Gaylor, MJ (1992) Effects of temperature and larval diets on development of the beet armyworm. Environmental Entomology 21, 780786.CrossRefGoogle Scholar
Bae, SD (1999) Leaf characteristics of leguminous plants and the biology of tobacco cutworm, Spodoptera litura Fabricius: I. The larval development and leaf feeding amount. Korean Journal of Applied Entomology 38, 217224.Google Scholar
Bae, SD, Park, KB and Oh, YJ (1997) The effects of temperature and food source on the egg and larval development of tobacco cutworm, Spodoptera litura Fabricius. Korean Journal of Applied Entomology 36, 4854.Google Scholar
Bale, JS, Masters, GJ, Hodkinson, ID, Awmack, C, Bezemer, TM, Brown, VK, Butterfield, J, Buse, A, Coulson, JC, Farrar, J, Good, JEG, Harrington, R, Hartley, S, Jones, TH, Lindroth, RL, Press, MC, Symrnioudis, I, Watt, AD and Whittaker, JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8, 116.CrossRefGoogle Scholar
Bandoly, M and Steppuhn, A (2016) Bioassays to investigate the effects of insect oviposition on a plant's resistance to herbivores. Bio-Protocol 6, e1823.CrossRefGoogle Scholar
Brewer, MJ and Trumble, JT (1991) Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology 84, 16381644.CrossRefGoogle Scholar
Choi, JS and Park, YD (2000) Effects of some temperatures on larval development, adult longevity, and oviposition of the beet armyworm, Spodoptera exigua Hübner. Korean Journal of Life Science 10, 16.Google Scholar
Clark, BR and Faeth, SH (1997) The consequences of larval aggregation in the butterfly Chlosyne lacinia. Ecological Entomology 22, 408415.CrossRefGoogle Scholar
Clark, BR and Faeth, SH (1998) The evolution of egg clustering in butterflies: a test of the egg desiccation hypothesis. Evolutionary Ecology 12, 543552.CrossRefGoogle Scholar
Dai, HQ, Zhang, GL and Zhang, WJ (2017) Temperature dependent development parameters and population life table of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Arthropods 6, 117125.Google Scholar
Dhir, BC, Mohapatra, HK and Senapati, B (1992) Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection 20, 215217. Available at https://api.semanticscholar.org/CorpusID:82790324Google Scholar
EPPO (2013) 2013 PQR Database: European and Mediterranean Plant Protection Organization, Paris, France. Retrieved from http://www.eppo.int/DATABASES/pqr/pqr.htmGoogle Scholar
EPPO (2015) Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. EPPO Bulletin 45, 410444.CrossRefGoogle Scholar
Fand, BB, Sul, NT, Bal, SK and Minhas, PS (2015) Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS ONE 10, e0124682.CrossRefGoogle ScholarPubMed
Goh, HG, Lee, SG, Lee, BP, Choi, KM and Kim, JH (1990) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on artificial diet. Korean Journal of Applied Entomology 29, 180183.Google Scholar
Greenberg, SM, Sappington, TW, Legaspi, BCJ, Liu, TX and Sétamou, M (2001) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America 94, 566575.CrossRefGoogle Scholar
Gupta, GP, Rani, S, Birah, A and Raghuraman, M (2007) Improved artificial diet for mass rearing of the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 25, 5558.Google Scholar
Hasan, M, Aslam, A, Jafir, M, Javed, MW, Shehzad, M, Chaudhary, MZ and Aftab, M (2017) Effect of temperature and relative humidity on development of Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Entomology and Zoology Studies 5, 8590.Google Scholar
Holmes, LA, Vanlaerhoven, SL and Tomberlin, JK (2012) Relative humidity effects on the life history of Hermetia illucens (Diptera: Stratiomyidae). Environmental Entomology 41, 971978.CrossRefGoogle Scholar
Howe, RW (1965) A summary of estimates of optimal and minimal conditions for population increase of some stored products insects. Journal of Stored-Products Research 1, 177184.CrossRefGoogle Scholar
Hunter, MD (2001) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agricultural and Forest Entomology 3, 153159. Available at http://www.ecology.uga.edu./hunter.htmlCrossRefGoogle Scholar
Jaba, J, Mishra, SP, Arora, N and Munghate, R (2020) Impact of variegated temperature, CO2 and relative humidity on survival and development of beet armyworm Spodoptera exigua (Hübner) under controlled growth chamber. American Journal of Climate Change 9, 357370.CrossRefGoogle Scholar
Jung, JM, Byeon, DH, Jung, S and Lee, WH (2019) Effect of climate change on the potential distribution of the common cutworm (Spodoptera litura) in South Korea. Entomological Research 49, 519528.CrossRefGoogle Scholar
Kenyon, CJ (2010) The genetics of ageing. Nature 464, 504512.CrossRefGoogle ScholarPubMed
Kim, CH and Shin, HY (1987) Studies on bionomics and control of tobacco cutworm, Spodoptera litura Fabricius in southern part of Korea. Journal of Institute of Agriculture and Resource Utility-Gyeongsang National University 21, 105122.Google Scholar
Lai, T and Su, J (2011) Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Management Science 67, 14681472.CrossRefGoogle Scholar
Lee, SD, Ahn, SB, Cho, WS and Choi, KM (1991) Effects of temperature on the development of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Research Report of RDA, Crop Protection 33, 5862.Google Scholar
Luo, LZ and Cao, YZ (2000) Studies on the Spodoptera exigua occurrence, damage characteristics and the trend analysis. Plant Protection 26, 3739.Google Scholar
Maharjan, R, Ahn, J and Yi, H (2022) Interactive effects of temperature and plant host on the development parameters of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Insects 13, 747.CrossRefGoogle ScholarPubMed
Maharjan, R, Hong, S, Ahn, J, Yoon, Y, Jang, Y, Kim, J, Lee, M, Park, K and Yi, H (2023) Temperature and host plant impacts on the development of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae): linear and nonlinear modeling. Insects 14, 412.CrossRefGoogle ScholarPubMed
Malekera, MJ, Acharya, R, Mostafiz, MM, Hwang, H-S, Bhusal, N and Lee, K-Y (2022) Temperature-dependent development models describing the effects of temperature on the development of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Insects 13, 1084.CrossRefGoogle Scholar
Mascarenhas, VJ, Graves, JB, Leonard, BR and Burris, E (1998) Susceptibility of field populations of beet armyworm (Lepidoptera: Noctuidae) to commercial and experimental insecticides. Journal of Economic Entomology 91, 827833.CrossRefGoogle Scholar
Mehrkhou, F, Talebi, AA, Moharramipour, S, Naveh, VH and Farahani, S (2012) Development and fecundity of Spodoptera exigua (Lepidoptera: Noctuidae) on different soybean cultivars. Archives of Phytopathology and Plant Protection 45, 9098.CrossRefGoogle Scholar
Norhisham, AR, Abood, F, Rita, M and Hakeem, KR (2013) Effect of humidity on egg hatchability and reproductive biology of the bamboo borer (Dinoderus minutus Fabricius). SpringerPlus 2, 9. PMID:23419805; PMCID: PMC3569590. https://doi.org/10.1186/2193-1801-2-9CrossRefGoogle ScholarPubMed
Osorio, A, Martínez, AM, Schneider, MI, Díaz, O, Corrales, JL, Avilés, MC, Avilés, GS and Pineda, S (2008) Monitoring of beet army-worm resistance to spinosad and methoxyfenozide in Mexico. Pest Management Science 64, 10011007. Available at http://hdl.handle.net/1854/LU-690619CrossRefGoogle Scholar
Ranga Rao, GV, Wightman, JA and Ranga Rao, DV (1989) Threshold temperatures and thermal requirements for the development of Spodoptera litura (Lepidoptera: Noctuidae). Environmental Entomology 18, 548551.Google Scholar
Rao, MS and Prasad, TV (2020) Temperature based phenology model for predicting establishment and survival of Spodoptera litura (Feb.) on groundnut during climate change scenario in India. Journal of Agrometeorology 22, 2432.Google Scholar
Saeed, S, Sayyed, AH and Ahmad, I (2010) Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Pest Science 83, 165172.CrossRefGoogle Scholar
SAS Institute Inc. (2002) SAS Use's Guide. Statistics; SAS, Institute Inc., Cary, NC, USA.Google Scholar
Sharma, AN, Gupta, GK, Verma, RK, Sharma, OP, Bhagat, S, Amaresan, N, Saini, MR, Chattopadhyay, C, Sushil, SN, Asre, R, Kapoor, KS, Satyagopal, K and Jeyakumar, P (2014) Integrated pest management package for soybean; Directorate of Plant Protection, Quarantine and Storage: Faridabad, India, p. 41.Google Scholar
Shuqing, L (2002) Effect of temperature and humidity on the development of Spodoptera exigua (Hübner). Journal of Huazhong (Central China) Agriculture University 21, 352355.Google Scholar
Tamiru, A, Getu, E, Jembere, B and Bruce, T (2012) Effect of temperature and relative humidity on the development and fecundity of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Bulletin of Entomological Research 102, 915.CrossRefGoogle ScholarPubMed
Taylor, F (1981) Ecology and evolution of physiological time in insects. American Naturalist 117, 123. Available at https://www.jstor.org/stable/2460694CrossRefGoogle Scholar
Tshiala, MF, Botai, JO and Olwoch, JM (2012) Leaf miner Agromyzid pest distribution over Limpopo Province under changing climate. African Journal of Agricultural Research 7, 65156522.Google Scholar
Wigglesworth, VB (1984) Insect Physiology. New York, NY: Cambridge University Press, p. 202.Google Scholar
Winston, PW and Bates, DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41, 232237.CrossRefGoogle Scholar
Xue, M, Pang, YH, Wang, HT, Li, QL and Liu, TX (2010) Effects of four host plants on biology and food utilization of the cutworm, Spodoptera litura. Journal of Insect Science 10, 22.CrossRefGoogle ScholarPubMed
Zheng, XL, Cong, XP, Wang, XP and Lei, CL (2011) A review of geographic distribution, overwintering and migration in Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Journal of the Entomological Research Society 13, 3948. Available at https://www.entomol.org/journal/index.php/JERS/article/view/327Google Scholar