Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T22:54:50.192Z Has data issue: false hasContentIssue false

RNA interference-mediated knockdown of some genes involved in digestion and development of Helicoverpa armigera

Published online by Cambridge University Press:  09 May 2017

M. Vatanparast
Affiliation:
Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
M. Kazzazi*
Affiliation:
Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
A. Mirzaie-asl
Affiliation:
Department of Biotechnology, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
V. Hosseininaveh
Affiliation:
Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
*
*Author for correspondence: Phone: +08138320619 Fax: +08138270280 E-mail: mkazzazi@basu.ac.ir

Abstract

Helicoverpa armigera is a significant agricultural pest and particularly notorious for its resistance to many types of common insecticides. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing and trigged by double-strand RNA (dsRNA), has become a widely used reverse genetics and potent tool for insect pest control. In this study, the effect of ingestion and injection delivery methods of dsRNA related two important enzyme genes, α-amylase (HaAMY48, Ha-AMY49) and juvenile hormone esterase (Ha-JHE), were examined on growth and development of H. armigera. After 24, 48, 72 and 96 h of feeding bioassay, significant down regulation was observed about; 56, 68, 78, 80.75% for HaAMY48, 60, 70, 86.5 and 96.75%, for Ha-AMY49 and 14, 27.5, 23 and 31.7% for Ha-JHE, respectively. The results for injection assay was 61.5, 71.5, 74 and 95.8% for Ha-AMY48; 70, 88, 91.5 and 97.7% for Ha-AMY49 and 22, 61, 75 and 74% for Ha-JHE after 24, 48 and 72 h of last injecting, respectively. Larvae that treated with dsRNA, fed or injected, lost more than half of their weight. 50% mortality in treated larvae was observed in the case injection bioassay with dsHa-JHE and 59% of larvae that fed of dsRNA-treated cubes survived. DsHa-AMY48 and 49 have significant mortality, but mixing of them is more effective in both bioassays. Injection bioassay has a potent inhibitory effect on α-amylase-specific activity about more than 87% in treated larvae with mix of dsHa-AMY48 and 49. Adult malformation percent was evaluated for feeding (28, 35.5 and 43% for Ha-AMY48, 49 and Ha-JHE, respectively) and injection bioassay (23, 42 and 29% for Ha-AMY48, 49 and Ha-JHE, respectively). All these finding suggest that Ha-AMY48, Ha-AMY49 and Ha-JHE can be new candidates to scheming effective dsRNAs pesticide for H. armigera control.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, R.N., Santos, A., Pinto, F.S., Gontijo, N.F., Lehane, M.J. & Pereira, M.H. (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochemistry and Molecular Biology 36, 683693.Google Scholar
Aravin, A.A., Naumova, N.M., Tulin, A.V., Vagin, V.V., Rozovsky, Y.M. & Gvozdev, V.A. (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the Drosophila melanogaster (Diptera: Drosophilidae) germline. Current Biology 11, 10171027.Google Scholar
Asokan, R., Sharath, C.G., Manamohan, M. & Krishna, N.K. (2013) Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera (Lepidoptera: Noctuidae). Bulletin of Entomological Research 103, 555563.Google Scholar
Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T. & Pleau, M. (2007) Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25, 13221326.Google Scholar
Bernfeld, P. (1955) Amylase α and β. Methods in Enzymology 1, 149151.Google Scholar
Challa, M.M., Sanivada, S.K. & Koduru, U.D. (2013) Total soluble protein profiles of Beauveria bassiana and their relationship with virulence against Helicoverpa armigera (Lepidoptera: Noctuidae). Biocontrol Science and Technology 23, 11691185.Google Scholar
Chen, X., Tian, H., Zou, L., Tang, B., Hu, J. & Zhang, W. (2008) Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research 98, 613619.Google Scholar
Chikate, Y.R., Dawkar, V.V., Barbole, R.S., Tilak, P.V., Gupta, V.S. & Giri, A.P. (2016) RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae. Pesticide Biochemistry and Physiology 133, 4451.Google Scholar
Denlinger, D.L. (1985) Hormonal control of diapause. pp. 353412 in Kerkut, G.A. & Gilbert, L.I. (Eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford, Pergamon Press.Google Scholar
Devi, V.S., Sharma, H.C. & Rao, P.A. (2011) Interaction between host plant resistance and biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) in managing the pod borer Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Crop Protection 30, 962969.Google Scholar
Dietz, F.J. & van der Straaten, J. (1992) Rethinking environmental economics: missing links between economic theory and environmental policy. Journal of Economic Issues 26, 2751.Google Scholar
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans (Rhabtida: Rhabditidae). Nature 391, 806811.Google Scholar
Franco, O.L., Riggen, D.J., Melo, F.R., Bloch, C., Silva, C. & Grossi, D.S. (2000) Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. European Journal of Biochemistry 267, 14661473.Google Scholar
Geley, S. & Muller, C. (2004) RNAi: ancient mechanism with a promising future. Experimental Gerontology 39, 985998.Google Scholar
Ghanim, M., Kontsedalov, S. & Czosnek, H. (2007) Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology 37, 732738.Google Scholar
Ghosh, A., Chatterjee, M. & Roy, A. (2010) Bio-efficacy of spinosad against tomato fruit borer Helicoverpa armigera (Lepidoptera: Noctuidae) and its natural enemies. Journal of Horticulture and Forestry 2, 108111.Google Scholar
Gilbert, L.I., Granger, N.A. & Roe, R.M. (2000) The juvenile hormones: historical facts and speculations on future research directions. Insect Biochemistry and Insect Molecular Biology 30, 617644.Google Scholar
Gordon, K. H. & Waterhouse, P. M. (2007) RNAi for insect-proof plants. Nature Biotechnology 25, 12311232.Google Scholar
Hannon, G. J. (2002) RNA interference. Nature 418, 244251.Google Scholar
Huvenne, H. & Smagghe, G. (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiology 56, 227235.Google Scholar
Heckel, D.G. (2012) Insecticide resistance after Silent spring. Science 337, 16121614.Google Scholar
Jin, S., Singh, N.D., Li, L., Zhang, X. & Daniell, H. (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera (Lepidoptera: Noctuidae) larval development and pupation. Plant Biotechnology Journal 13, 435446.Google Scholar
Jing, Y. & Zhao-jun, H. (2014) Efficiency of different methods for dsRNA delivery in cotton bollworm (Helicoverpa armigera). Journal of Integrative Agriculture 13, 115123.Google Scholar
Kotkar, H.M., Bhide, A.J., Gupta, V.S. & Giri, A. (2012) Amylase gene expression patterns in Helicoverpa armigera (Lepidoptera: Noctuidae) upon feeding on a range of host plants. Gene 501, 17.Google Scholar
Kotwica-Rolinska, J., Gvakharia, B.O., Kedzierska, U., Jadwiga, M.G. & Piotr, B. (2013) Effects of period RNAi on V-ATPase expression and rhythmic pH changes in the vas deferens of Spodoptera littoralis (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology 43, 522–32.Google Scholar
Kumar, M., Gupta, G.P. & Rajam, M.V. (2009) Silencing of acetyl cholinesterase gene of Helicoverpa armigera (Lepidoptera: Noctuidae) by siRNA affects larval growth and its life cycle. Journal of Insect Physiology 55, 273278.Google Scholar
Lim, Z.X., Robinson, K.E., Jain, R.G., Chandra, S.G., Asokan, R., Asgari, S. & Mitter, N. (2016) Diet-delivered RNAi in Helicoverpa armigera – progresses and challenges. Journal of Insect Physiology 85, 8693.Google Scholar
Livak, K.L. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25, 402408.Google Scholar
Mizoguchi, A. (2001) Effects of juvenile hormone on the secretion of prothoracico-tropic hormone in the last- and penultimate-instar larvae of the silkworm Bombyx mori (Lepidoptera: Bombycidae). Journal of Insect Physiology 47, 767775.Google Scholar
Price, D.R. & Gatehouse, J.A. (2008) RNAi-mediated crop protection against insects. Trends in Biotechnology 26, 393400.Google Scholar
Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P. & Bhatnagar, R.K. (2002) Silencing of midgut aminopeptidase N of Spodoptera litura (Lepidoptera: Noctuidae) by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. Journal of Biological Chemistry 277, 4684946851.Google Scholar
Riddiford, L.M. (1996) Molecular aspects of juvenile hormone action in insect metamorphosis. pp. 223251 in Gilbert, L.I., Tata, J.R. & Atkinson, B.G. (Eds) Metamorphosis: Post-embryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. San Diego, Academic Press.Google Scholar
Riddiford, L.M., Himura, K., Zhou, X. & Nelson, C.A. (2003) Insights into the molecular basis of the hormonal control of molting and the metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology 33, 13271338.Google Scholar
Roe, R.M. & Benkatesh, K. (1990) Metabolism of juvenile hormones: degradation and titer regulation. pp. 126179 in Gupta, A.P. (Ed.) Morphogenetic Hormones of Arthropods. New Brunswick, Rutgers University Press.Google Scholar
Scott, J.G. & Wen, Z.M. (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Management Science 57, 958967.Google Scholar
Siomi, H. & Siomi, M.C. (2009) On the road to reading the RNA interference code. Nature 457, 396404.Google Scholar
Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D.P., Crava, C.M., de Maagd, R.A., Duvic, B., Erlandson, M., Faye, I., Felföldi, G., Fujiwara, H., Futahashi, R., Gandhe, A.S., Gatehouse, H.S., Gatehouse, L.N., Giebultowicz, J.M., Gómez, I., Grimmelikhuijzen, C.J.P., Groot, A.T., Hauser, F., Heckel, D.G., Hegedus, D.D., Hrycaj, S., Huang, L., Hull, J.J., Iatrou, K., Iga, M., Kanost, M.R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P.J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantinou, M., Popadic, A., Rajam, M.V., Saenko, S., Simpson, R.M., Soberón, M., Strand, M.R., Tomita, S., Toprak, U., Wang, P., Wee, C.W., Whyard, S., Zhang, W., Nagaraju, J., French-Constant, R.H., Herrero, S., Gordon, K., Swevers, L. & Smagghe, G. (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology 57, 231245.Google Scholar
Wang, Z., Dong, Y., Desneux, N. & Niu, C. (2013) RNAi silencing of the HaHMG-CoA reductase gene inhibits oviposition in the Helicoverpa armigera cotton bollworm. PLoS ONE 8, 19.Google Scholar
Yamaguchi, J., Mizoguchi, T. & Fujiwara, H. (2011) siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos. PLoS ONE 6, 17.Google Scholar
Yang, J. & Han, Z. (2014) Optimisation of RNA interference-mediated gene silencing in Helicoverpa armigera. Austral Entomology 53, 8388.Google Scholar
Yoo, B.C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Young, M.L., Lough, T.J. & Lucas, W.J. (2004) Asystemic small RNA signaling system in plants. The Plant Cell 16, 19792000.Google Scholar
Yu, N., Christiaens, C., Liu, J., Niu, J., Cappelle, K., Caccia, S., Huvenne, H. & Smagghe, G. (2013) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science 20, 414.Google Scholar
Zeng, F. & Cohen, A.C. (2000) Partial characterization of α-amylase in the salivary glands of Lygus hesperus and L. lineolaris. Comparative Biochemistry and Physiology 126, 916.Google Scholar
Zhang, L., Shang, Q., Lu, Y., Zhao, Q. & Gao, X. (2015) A transferrin gene associated with development and 2-tridecanone tolerancein Helicoverpa armigera. Insect Biochemistry and Molecular Biology 24, 155166.Google Scholar
Zhu, Y.C., Liu, X., Maddurb, A.A., Oppert, B. & Chen, M.S. (2005) Cloning and characterization of chymotrypsin- and trypsin-like cDNAs from the gut of the Hessian fly (Mayetiola destructor). Insect Biochemistry and Molecular Biology 35, 2332.Google Scholar
Zhu, J.Q., Liu, S., Ma, Y., Zhang, J.Q., Qi, H.S., Wei, Z.J., Yao, Q., Zhang, W.Q. & Li, S. (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS ONE 7, 19.Google Scholar