Hostname: page-component-68c7f8b79f-m4fzj Total loading time: 0 Render date: 2025-12-21T05:33:26.023Z Has data issue: false hasContentIssue false

Resistance of hybrids and elite tomato lines, developed through interspecific crosses between Solanum lycopersicum and Solanum pennellii, to major arthropod pests

Published online by Cambridge University Press:  27 October 2025

Marcela Padilha Iastremski
Affiliation:
Programa de Pós Graduação em Agronomia, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
Jair Garcia Neto
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
Fernando Teruhiko Hata*
Affiliation:
Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR, Brazil
Leila Bernart Vilela
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
Matheus Henrique Seco Sidor
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
Wilson Roberto Maluf
Affiliation:
Departamento de Agricultura, Universidade Federal de Lavras, Lavras, MG, Brazil
Juliano Tadeu Vilela de Resende
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
*
Corresponding author: Fernando Teruhiko Hata; Email: hata.ft@hotmail.com

Abstract

The objective of this experiment was to evaluate the resistance of advanced tomato genotypes resulting from an interspecific cross between Solanum lycopersicum and Solanum pennellii to Tetranychus urticae and Phthorimaea absoluta. The plant materials included nine lines, 14 hybrids, Leblon F1 (commercial control), and the wild accession S. pennellii LA716 as a resistance standard. Acylsugar content was then determined. For mite bioassays, oviposition, adult mortality/survival, egg hatching, and nymphs were evaluated using a no-choice bioassay. For P. absoluta bioassays, the oviposition, intensity of damage, type of lesions, and percentage of damaged leaflets were evaluated. F1 (TOM-808 × BPX-443E-03-02-113-02), F1(TOM-810 × BPX-443E-03-02-113-02), F1(TOM-808 × TOM-717), F1(TOM-808 × TOM-757), and F1(TOM-810 × TOM-717) were the most resistant to the mite, exhibiting higher female mortality, reduced oviposition, and no nymph emergence observed. The genotypes F1(TOM-808 × TOM-667), F1(TOM-808 × TOM-717), F1(TOM-810 × TOM-615), and several lines, which exhibited reduced oviposition and foliar damage. The results of the bioassays indicated that high acylsugar content reduced oviposition and foliar damage of the tested pests. The hybrid F1(TOM-808 × TOM-717) is the most promising at this stage of the breeding program, as it shows resistance to both tested pests.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almeida, KC, de Resende, JTV, Hata, FT, Oliveira, LVB and Neto, JG (2023) Characterization of Solanum sp. Lycopersicon section for density and types of leaf trichomes and resistance to whitefly and tomato pinworm. Scientia Horticulturae 310, 111746.10.1016/j.scienta.2022.111746CrossRefGoogle Scholar
Brust, GE and Gotoh, T (2018) Chapter 5 - Mites: Biology, ecology, and management. In Wakil, W, Brust, GE and Perring, TM (Eds.), Sustainable Management of Arthropod Pests of Tomato. San Diego: Academic Press, pp. 111130.Google Scholar
De Lima Filho, RB, Resende, JTV, de Oliveira, JRF, Nardi, C, Silva, PR, Rech, C, Oliveira, LVB, Ventura, MU and Ribeiro Silva, ALB (2022) Relationship between acylsugars and leaf trichomes: Mediators of pest resistance in tomato. Insects 13(8), 738.10.3390/insects13080738CrossRefGoogle ScholarPubMed
De Oliveira, JRF, de Resende, JTV, Maluf, WR, Lucini, T, de Lima Filho, RB, de Lima, IP and Nardi, C (2018) Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Frontiers in Plant Science 9, 1132.10.3389/fpls.2018.01132CrossRefGoogle ScholarPubMed
Dias, DM, Corte, LED, Resende, JTV, Zeffa, DM, Resende, NCV, Zanin, DS and Lima Filho, RBD (2021) Acylsugars in tomato varieties confer resistance to the whitefly and reduce the spread of fumagine. Bragantia 80, e4421.10.1590/1678-4499.20210022CrossRefGoogle Scholar
Dias, DM, de Resende, JTV, Zeist, AR, Gabriel, A, Santos, MH and Vilela, NC (2019) Resistance of processing tomato genotypes to leafminer (Tuta absoluta). Horticultura Brasileira 37, 4046.10.1590/s0102-053620190106CrossRefGoogle Scholar
El-Aassar, MR, Soliman, MHA and Abd Elaal, AA (2015) Efficiency of sex pheromone traps and some bio and chemical insecticides against tomato borer larvae, Tuta absoluta (Meyrick) and estimate the damages of leaves and fruit tomato plant. Annals of Agricultural Sciences 60(1), 153156.10.1016/j.aoas.2015.05.003CrossRefGoogle Scholar
Ferreira, EB, Cavalcanti, PP and Nogueira, DA (2021) Experimental Designs Package.Google Scholar
Gardner, RG and Panthee, DR (2012) ‘Mountain Magic’: An early blight and late blight-resistant specialty type F1 hybrid tomato. HortScience 47(2), 299300.10.21273/HORTSCI.47.2.299CrossRefGoogle Scholar
Gomes, ACS, Cardoso, MDG, Resende, JTV, Thomasi, SS, Soares, LI and Ferreira, AG (2017) Synthetic acylsugars and their effects on the control of arthropod pests. Ciência E Agrotecnologia 41, 201208.10.1590/1413-70542017412031416CrossRefGoogle Scholar
Han, Y, Zhang, YC, Ye, WN, Wang, SM, Wang, X and Gao, CF (2024) Increasing resistance of Tetranychus urticae to common acaricides in China and risk assessment to spiromesifen. Crop Protection 176, 106519.10.1016/j.cropro.2023.106519CrossRefGoogle Scholar
Jiang, Z, Yang, G, Zhang, J, Chen, G, Hu, C, Chen, H and Zhang, X (2023) Effects of different host plants on the growth, development, and fecundity of Phthorimaea absoluta (Lepidoptera: Gelechiidae): An evaluation based on the age–stage two–sex life table. Journal of Economic Entomology 116(5), 15751584.10.1093/jee/toad144CrossRefGoogle ScholarPubMed
Kartowikromo, KY, Pizzo, JS, Rutz, T, Love, ZE, Simmons, AM, Ojeda, AS and Hamid, AM (2024) Identification and structural elucidation of acylsugars in tomato leaves using liquid chromatography–ion mobility–tandem mass spectrometry (LC-IM-MS/MS). Journal of the American Society for Mass Spectrometry 36(1), 135145.10.1021/jasms.4c00376CrossRefGoogle ScholarPubMed
Kewedar, S, Chen, QR, Moural, TW, Lo, C, Umbel, E, Forrence, PJ and Zhu, F (2025) Acaricide resistance monitoring and structural insights for precision Tetranychus urticae management. Insects 16(5), 440.10.3390/insects16050440CrossRefGoogle ScholarPubMed
Kolde, R (2018) Pretty Heatmaps. R Package Version 1, 726.Google Scholar
Labory, CRG, Santa-Cecília, LVC, Maluf, WR, Cardoso, MDG, Bearzotti, E and Souza, JCD (1999) Seleção indireta para teor de 2-tridecanona em tomateiros segregantes e sua relação com a resistência à traça-do-tomateiro. Pesquisa Agropecuária Brasileira 34, 733740.10.1590/S0100-204X1999000500002CrossRefGoogle Scholar
Lucini, T, Faria, MV, Rohde, C, Resende, JTV and de Oliveira, JRF (2015) Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interactions 9, 4553.10.1007/s11829-014-9347-7CrossRefGoogle Scholar
Luckwill, LC (1943) The Genus Lycopersicon: A Historical, Biological and Taxonomic Survey of the Wild and Cultivated Tomato. Aberdeen: The University Press.Google Scholar
Lybrand, DB, Anthony, TM, Jones, AD and Last, RL (2020) An integrated analytical approach reveals trichome acylsugar metabolite diversity in the wild tomato Solanum pennellii. Metabolites 10(10), 401.10.3390/metabo10100401CrossRefGoogle ScholarPubMed
Maluf, WR, Inoue, IF, Ferreira, RDPD, Gomes, LAA, Castro, EMD and Cardoso, MDG (2007) Higher glandular trichome density in tomato leaflets and repellence to spider mites. Pesquisa Agropecuária Brasileira 42, 12271235.10.1590/S0100-204X2007000900003CrossRefGoogle Scholar
Marinke, LS, de Resende, JTV, Hata, FT, Dias, DM, de Oliveira, LVB, Ventura, MU and de Lima Filho, RB (2022) Selection of tomato genotypes with high resistance to Tetranychus evansi mediated by glandular trichomes. Phytoparasitica 50(3), 629643.10.1007/s12600-022-00984-6CrossRefGoogle Scholar
Marinke, LS, Hata, FT, Gomes, GC, Shimizu, GD and de Resende, JTV (2025) Tomato genotypes with high acylglucose levels tolerant to arthropod pests. Arthropod-Plant Interactions 19, 49.10.1007/s11829-025-10155-zCrossRefGoogle Scholar
Mendiburu, F (2021) Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-1. https://cran.r-project.org/web/packages/agricolae/index.html, (accessed 20 November 2024).Google Scholar
Munir, S, Azeem, A, Zaman, MS and Haq, MZU (2024) From field to table: Ensuring food safety by reducing pesticide residues in food. Science of the Total Environment 922, 171382.10.1016/j.scitotenv.2024.171382CrossRefGoogle Scholar
Mutschler, MA, Kennedy, GG and Ullman, DE (2023a) Acylsugar-mediated resistance as part of a multilayered defense against thrips, orthotospoviruses, and beyond. Current Opinion in Insect Science 56, 101021.10.1016/j.cois.2023.101021CrossRefGoogle Scholar
Mutschler, MA, Smith, CM and Shimizu, M (2023b) Genetic mechanisms underlying insect resistance in tomato. Annual Review of Entomology 68, 2749.Google Scholar
Nelson, N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153(2), 375380.10.1016/S0021-9258(18)71980-7CrossRefGoogle Scholar
Papari, S, Dousti, A, Fallahzadeh, M, Haddi, K, Desneux, N and Saghaei, N (2024) Side effects of insecticides used for management of Tuta absoluta Meyrick (Lepidoptera: Gelechidae) on the biocontrol agent Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae). CABI Agriculture and Bioscience 5(1), 101.10.1186/s43170-024-00304-4CrossRefGoogle Scholar
Patil, I (2024) “ggplot2” Based Plots with Statistical Details.Google Scholar
Paudel, S, Lin, P-A, Foolad, MR, Ali, JG, Rajotte, EG and Felton, GW (2019) Induced plant defenses against herbivory in cultivated and wild tomato. Journal of Chemical Ecology 45, 693707.10.1007/s10886-019-01090-4CrossRefGoogle ScholarPubMed
Prasannakumar, NR, Jyothi, N, Prasadbabu, K, Ramkumar, G, Asokan, R, Saroja, S and Sridhar, V (2023) Evidence-based insecticide resistance in South American tomato leaf miner, Phthorimaea absoluta (Meyrick) under laboratory selection. Bulletin of Entomological Research 113(3), 419429.10.1017/S0007485323000081CrossRefGoogle ScholarPubMed
Rakha, M, Bouba, N, Ramasamy, S, Regnard, JL and Hanson, P (2017a) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genetic Resources and Crop Evolution 64(5), 10111022.10.1007/s10722-016-0421-0CrossRefGoogle Scholar
Rakha, M, Zekeya, N, Sevgan, S, Musembi, M, Ramasamy, S and Hanson, P (2017b) Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta. Plant Breeding 136(4), 562568.10.1111/pbr.12503CrossRefGoogle Scholar
Resende, JTV, Maluf, WR, Cardoso, MDG, Faria, MV, Gonçalves, LD and Nascimento, IRD (2008) Resistance of tomato genotypes with high level of acylsugars to Tetranychus evansi Baker & Pritchard. Scientia Agricola 65(1), 3135.10.1590/S0103-90162008000100005CrossRefGoogle Scholar
Resende, JTV, Maluf, WR, Cardoso, MDG, Nelson, DL and Faria, MV (2002) Inheritance of acylsugar contents in tomatoes derived from an interspecific cross with the wild tomato Lycopersicon pennellii and their effect on spider mite repellence. Genetics and Molecular Research 1(2), 106116.Google ScholarPubMed
Resende, NC, Silva, AAD, Maluf, WR, Resende, JTV, Zeist, AR and Gabriel, A (2020) Selection of tomato lines and populations for fruit shape and resistance to tomato leafminer. Horticultura Brasileira 38, 117125.10.1590/s0102-053620200202CrossRefGoogle Scholar
Sakata Seed Sudamerica - Hortaliças | Leblon. Available in: https://www.sakata.com.br/hortalicas/solanaceas/tomate/salada-indeterminado/leblon. (accessed 6 February 2024).Google Scholar
Sehat-Niaki, N, Zahedi Golpayegani, A, Torabi, E, Amiri-Besheli, B and Saboori, A (2025a) Behavioral and acaricidal effects of the chlorfenapyr and acequinocyl on the predatory mites, Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology 94(2), 28.10.1007/s10493-024-00995-4CrossRefGoogle Scholar
Sehat-Niaki, N, Zahedi Golpayegani, A, Torabi, E, Saboori, A, Amiri-Besheli, B and Fathipour, Y (2025b) Sublethal effects of chlorfenapyr and acequinocyl on the functional and numerical responses of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae) feeding on Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology 94(1), 20.10.1007/s10493-024-00984-7CrossRefGoogle Scholar
Shahini, S, Bërxolli, A and Kokojka, F (2021) Effectiveness of bio-insecticides and mass trapping based on population fluctuations for controlling Tuta absoluta under greenhouse conditions in Albania. Heliyon 7(1), e05753.10.1016/j.heliyon.2020.e05753CrossRefGoogle ScholarPubMed
Smeda, JR, Smith, HA and Mutschler, MA (2023) The amount and chemistry of acylsugars affects sweetpotato whitefly (Bemisia tabaci) oviposition and development, and tomato yellow leaf curl virus incidence, in field-grown tomato plants. PLoS One 18(11), e0275112.10.1371/journal.pone.0275112CrossRefGoogle ScholarPubMed
Tabary, L, Navajas, M, Tixier, MS and Navia, D (2024a) Tomato trichomes: Trade-off between plant defenses against pests and benefits for biological control agents. Acarologia 64(4), 12321253.10.24349/ej2w-b311CrossRefGoogle Scholar
Tabary, L, Navia, D, Auger, P, Migeon, A, Navajas, M and Tixier, MS (2024b) Plant, pest and predator interplay: Tomato trichomes effects on Tetranychus urticae (Koch) and the predatory mite Typhlodromus (Anthoseius) recki Wainstein. Experimental and Applied Acarology 93(1), 169195.10.1007/s10493-024-00917-4CrossRefGoogle Scholar
Rstudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC. Available in: http://www.rstudio.com/, (accessed 18 April 2024).Google Scholar
Terenciano, RM, da Silva, TL, Bastos, CS, Fernandes, FL, Dias, JP and de Sena Fernandes, ME (2025) Direct defense of Solanum lycopersicum L. to Tetranychus urticae Koch (Acari: Tetranychidae) mediated by plant morphological and chemical traits. Arthropod-Plant Interactions 19(1), 114.10.1007/s11829-025-10132-6CrossRefGoogle Scholar
Vendemiatti, E, Nowack, L, Peres, LEP, Benedito, VA and Schenck, CA (2025) Sticky business: The intricacies of acylsugar biosynthesis in the Solanaceae. Phytochemistry Reviews 24, 24852500.10.1007/s11101-024-09996-yCrossRefGoogle Scholar
Ward, JH (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236244.10.1080/01621459.1963.10500845CrossRefGoogle Scholar
Warnes, GR, Bolker, B, Bonebakker, L, Gentleman, R, Huber, W, Liaw, A, Lumley, T, Maechler, M, Magnusson, A, Moeller, S, Schwartz, M and Galili, T (2022a) gplots: Various R programming tools for plotting data. Disponível em: Available at https://github.com/talgalili/gplots, (accessed 18 April 2024).Google Scholar
Warnes, GR, Bolker, B, Lumley, T and Johnson, RC (2022b) Gmodels - Various R Programming Tools for Model Fitting. National Cancer Institute, Center for Cancer Research.Google Scholar