Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:35:03.344Z Has data issue: false hasContentIssue false

The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans

Published online by Cambridge University Press:  30 January 2017

B.L. Ingegno
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), ULF Entomologia Generale e Applicata, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
V. Candian
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), ULF Entomologia Generale e Applicata, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
I. Psomadelis
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), ULF Entomologia Generale e Applicata, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
N. Bodino
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), ULF Entomologia Generale e Applicata, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
L. Tavella*
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), ULF Entomologia Generale e Applicata, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
*
*Author for correspondence Phone: +390116708533 Fax: +390116708535 E-mail: luciana.tavella@unito.it

Abstract

Dicyphus errans (Wolff) has been shown to be a suitable biocontrol agent for Tuta absoluta (Meyrick). This generalist predator shares various host plants with the exotic pest, and these interactions could be exploited to enhance pest control. Therefore, host preference, survival rate and development times of the predator and prey were investigated on crop and non-crop plant species. Among the tested plants, the favourite hosts were Solanum species for T. absoluta, and herb Robert, European black nightshade, courgette and tomato for D. errans. Tuta absoluta accepted the same plant species as hosts for oviposition, but it never developed on herb Robert and courgette in all the experiments. Based on our results, we would suggest the use of courgette and herb Robert in consociation with tomato and as a companion plant, respectively, which may keep pest densities below the economic threshold. Moreover, the omnivorous and widespread D. errans could be a key predator of this exotic pest, allowing a high encounter probability on several cultivated and non-cultivated plant species.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzone, A., Alma, A. & Tavella, L. (1990) Ruolo dei Miridi (Rhynchota Heteroptera) nella limitazione di Trialeurodes vaporariorum Westw. (Rhynchota Aleyrodidae). Nota preliminare. Bollettino di Zoologia Agraria e Bachicoltura 22, 4351.Google Scholar
Balzan, M.V. & Moonen, A.-C. (2014) Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomologia Experimentalis et Applicata 150, 4565.Google Scholar
Bawin, T., Dujeu, D., De Backer, L., Fauconnier, M.L., Lognay, G., Delaplace, P., Francis, F. & Verheggenet, F.J. (2015) Could alternative solanaceous hosts act as refuges for the tomato leafminer, Tuta absoluta? Arthropod-Plant Interactions 9, 425435.Google Scholar
Biondi, A., Zappalà, L., Di Mauro, A., Tropea Garzia, G., Russo, A., Desneux, N. & Siscaro, G. (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? BioControl 61, 7990.Google Scholar
Bruce, T.J.A. & Pickett, J.A. (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry 72, 16051611.CrossRefGoogle ScholarPubMed
Calabrò, M. & Nucifora, A. (1993) Presenza di Miridi zoofitofagi (Rhynchota, Heteroptera) su pomodoro e altre piante e loro utilizzabilità come ausiliari. Bolletino dell'Accademia Gioenia di Scienze Naturali 26, 115131.Google Scholar
Desneux, N., Wajnberg, E., Wyckhuys, K.A.G., Burgio, G., Arpaia, S., Narvaez-Vasquez, C.A., Gonzalez-Cabrera, J., Catalán Ruescas, D., Tabone, E., Frandon, J., Pizzol, J., Poncet, C., Cabello, T. & Urbaneja, A. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197215.Google Scholar
Goula, M. & Alomar, O. (1994) Míridos (Heteroptera Miridae) de interés en el control integrado de plagas en el tomate. Guía para su identificación. Bolétin de Sanidad Vegetal Plagas 20, 131143.Google Scholar
Hatherly, I.S., Pedersen, B.P. & Bale, J.S. (2008) Establishment potential of the predatory mirid Dicyphus hesperus in northern Europe. BioControl 53, 589601.Google Scholar
Ingegno, B.L. & Messelink, G. (2016) Omnivorous predators for biological pest control in greenhouse crops. Fact sheets no.8. Cost action FA1105 – Biogreenhouses. doi: https://doi.org/10.18174/373599 Google Scholar
Ingegno, B.L., Goula, M., Navone, P. & Tavella, L. (2008) Distribution and host plants of the genus Dicyphus in the Alpine valleys of NW Italy. Bulletin of Insectology 61, 139140.Google Scholar
Ingegno, B.L., Pansa, M.G. & Tavella, L. (2009) Tomato colonization by predatory bugs (Heteroptera: Miridae) in agroecosystems of NW Italy. IOBC/WPRS Bulletin 49, 287291.Google Scholar
Ingegno, B.L., Pansa, M.G. & Tavella, L. (2011) Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biological Control 58, 174181.Google Scholar
Ingegno, B.L., Ferracini, C., Gallinotti, D., Alma, A. & Tavella, L. (2013) Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick). Biological Control 67, 246252.Google Scholar
Ingegno, B.L., Frati, S. & Tavella, L. (2014) Control strategies against Tuta absoluta in tomato greenhouses. IOBC/WPRS Bulletin 102, 103110.Google Scholar
Ingegno, B.L., La-Spina, M., Jordan, M.J., Tavella, L. & Sanchez, J.A. (2016) Host plant perception and selection in the sibling species Macrolophus melanotoma and Macrolophus pygmaeus (Hemiptera: Miridae). Journal of Insect Behaviour 29, 117142. doi: 10.1007/s10905-016-9549-1.Google Scholar
Kerzhner, I.M. & Josifov, J. (1999) Miridae. pp. 22–28 in Aukema, B. & Rieger, Ch. (Eds) Annals of the Entomological Society of America, Volume 3, Catalogue of the Heteroptera of the Palaearctic Region, Vol. 3, Cimicomorpha II. The Netherlands Entomological Society, 577 pp. – Isbn 90-71912-19-1.Google Scholar
Lalonde, R.G., McGregor, R.R., Gillespie, D.R. & Roitberg, B.D. (1999) Plant-feeding by arthropod predators contributes to the stability of predator-prey population dynamics. Oikos 87, 603608.Google Scholar
Lambion, J. (2010) Functional biodiversity in Southern France: a method to enhance predatory mirid bug populations. In: I International Conference on Organic Greenhouse Horticulture, Volume 915. pp. 165170.Google Scholar
Landis, D.A., Wratten, S.D. & Gurr, G.M. (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45, 175201.Google Scholar
Lins, J.C., van Loon, J.J.A., Bueno, V.H.P., Lucas-Barbosa, D., Dicke, M. & van Lenteren, J.C. (2014) Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics. BioControl 59, 707718.Google Scholar
Megido, R.C., Brostaux, Y., Haubruge, E. & Verheggen, F.J. (2013) Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. American Journal of Potato Research 90, 255260.Google Scholar
Messelink, G.J., Bennison, J., Alomar, O., Ingegno, B.L., Tavella, L., Shipp, L., Palevsky, E. & Wäckers, F.L. (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59, 377393.Google Scholar
Mollá, O., Biondi, A., Alonso-Valiente, M. & Urbaneja, A. (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl 59, 175183.CrossRefGoogle Scholar
Naselli, M., Urbaneja, A., Siscaro, G., Jaques, J.A., Zappalà, L., Flors, V., Pérez-Hedo, M. (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis . International Journal of Molecular Sciences 17, 1210.Google Scholar
Parker, J.E., Snyder, W.E., Hamilton, G.C. & Rodriguez-Saona, C. (2013) Companion planting and insect pest control. pp. 1–29 in Soloneski, S. (ed) Weed and Pest Control – Conventional and New Challenges, InTech Rijeka, Croatia.Google Scholar
Perdikis, D.Ch. & Lykouressis, D.P. (2000) Effects of various items, host plants, and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biological Control 17, 5560.Google Scholar
Perdikis, D.Ch., Fantinou, A. & Lykouressis, D.P. (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biological Control 59, 1321.Google Scholar
Tavella, L. & Goula, M. (2001) Dicyphini collected in horticultural areas of north-western Italy (Heteroptera Miridae). Bollettino di Zoologia Agraria e Bachicoltura 33, 93102.Google Scholar
Tofts, R.J. (2004) Geranium robertianum L. Journal of Ecology 92, 537555.Google Scholar
Tropea Garzia, G., Siscaro, G., Biondi, A. & Zappalà, L. (2012) Tuta absoluta, a South American pest of tomato now in the EPPO region: biology, distribution and damage. EPPO Bulletin 42, 205210.Google Scholar
Urbaneja, A., Monton, H. & Mollá, O. (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis . Journal of Applied Entomology 133, 292296.Google Scholar
Voigt, D. (2005) Untersuchungen zur morphologie, biologie und ökologie der räuberischen weichwanze Dicyphus errans Wolff (Heteroptera, Miridae, Bryocorinae). Doctoral dissertation, CAU Kiel. 154 pp.Google Scholar
Voigt, D., Gorb, E. & Gorb, S. (2007) Plant surface–bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interactions 1, 221243.Google Scholar
Zappalà, L., Biondi, A., Alma, A., AL-Jboory, I.J., Arnò, J., Bayram, A., Chailleux, A., EL-Arnaouty, A., Gerling, D., Guenaoui, Y., Shaltiel-Harpaz, L., Siscaro, G., Stavrinides, M., Tavella, L., Vercher, R., Urbaneja, A. & Desneux, N. (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. Journal of Pest Science 86, 635647.CrossRefGoogle Scholar