Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T03:36:54.879Z Has data issue: false hasContentIssue false

Population structure of the banana weevil, an introduced pest in the Canary Islands, studied by RAPD analysis

Published online by Cambridge University Press:  12 November 2007

C. Magaña
Affiliation:
Dpto. de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC. Madrid, Spain
B. Beroiz
Affiliation:
Dpto. de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC. Madrid, Spain
P. Hernández-Crespo
Affiliation:
Dpto. de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC. Madrid, Spain
M. Montes de Oca
Affiliation:
Escuela Técnica Superior de Ingenieria Agraria, U.L.L. La Laguna-Tenerife, Spain
A. Carnero
Affiliation:
Dpto. Protección Vegetal del I.C.I.A., Apdo. 60, 38200 La Laguna-Tenerife, Spain
F. Ortego
Affiliation:
Dpto. de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC. Madrid, Spain
P. Castañera*
Affiliation:
Dpto. de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC. Madrid, Spain
*
*Author for correspondence Fax: +34 91 536 0432 E-mail: castan@cib.csic.es

Abstract

The banana weevil (BW), Cosmopolites sordidus (Coleoptera: Curculionidae), is one of the most important insect pests of bananas and plantains. The mobility and the origin of BW infestations at the Canary Islands (Tenerife, La Gomera and La Palma) have been analysed using Random Amplified Polymorphic DNA (RAPD) as molecular markers. Populations from Costa Rica, Colombia, Uganda and Madeira were also included for comparison. One hundred and fifteen reproducible bands from eight primers were obtained. The level of polymorphism in the populations from the Canary Islands (40–62%) was in the range of those found in other populations. Nei's genetic distances, pair-wise fixation index (FST) values indicate that the closest populations are Tenerife populations among themselves (Nei's genetic distance=0.054–0.100; FST=0.091–0.157) and Costa Rica and Colombia populations (Nei's genetic distance=0.049; FST=0.113). Our results indicate the existence of BW local biotypes with limited gene flow and affected by genetic drift. These results are compatible with a unique event of colonization at Tenerife; whereas, the outbreaks in La Gomera and La Palma may come from independent introductions. The Madeira population is phylogenetically and geographically closer to the Canary Islands populations, suggesting that it is the most likely source of the insects introduced in the Canary Islands.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, H. & Lightner, D.V. (2000) Identification of genetic populations of the Pacific blue shrimp Penaeus stylirostris of the Gulf of California, Mexico. Marine Biology 137, 875885.CrossRefGoogle Scholar
Bas, B., Dalkilic, Z., Peever, T.L., Nigg, H.N., Simpson, S.E., Gmitter, F.G. & Adair, R.C. (2000) Genetic relationships among Florida Diaprepes abbreviatus (Coleoptera: Curculionidae) populations. Annals of the Entomological Society of America 93, 459467.CrossRefGoogle Scholar
Black, W.C. IV, (1993) PCR with arbitrary primers: approach with care. Insect Molecular Biology 2, 15.CrossRefGoogle ScholarPubMed
Carnero, A., Montesdeoca, M., Magaña, C., Padilla, A., Herrera, R., Casañas, N., Ortego, F., Hernández-Crespo, P., Lobo, G., López-Llorca, L., García del Pino, F. & Castañera, P. (2004) Pest status of Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) in the Canary Islands. XXII International Congress of Entomology, Brisbane, 1520 August 2004, Brisbane, Australia.Google Scholar
Excoffier, L.L., Smouse, P.P.E. & Quattro, J.J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author, Department of Genetics, University of Washington, Seattle.Google Scholar
Gold, C.S. & Messiaen, S. (2000) The banana weevil Cosmopolites sordidus. MusaPest INIBAP Fact Sheet No. 4.Google Scholar
Gold, C.S., Pena, J.E. & Karamura, E.B. (2001) Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integrated Pest Management Reviews 6, 79155.CrossRefGoogle Scholar
Hartl, D.L. (1980) Principles of Population Genetics. 488 pp. Sunderland, MA, Sinauer Associates.Google Scholar
Kim, K.S. & Sappington, T.W. (2004) Genetic structuring of boll weevil populations in the US based on RAPD markers. Insect Molecular Biology 13, 293303.CrossRefGoogle ScholarPubMed
Lynch, M. & Milligan, B.G. (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 9199.CrossRefGoogle ScholarPubMed
Nei, M. (1972) Genetic distance between populations. The American Naturalist 106, 283292.CrossRefGoogle Scholar
Nuno, L. & Ribeiro, V.P. (2002) Cosmopolites sordidus in the autonomous region of Madeira. Infomusa 11, 10.Google Scholar
Ochieng, V.O. (2001) Genetic biodiversity in banana weevil Cosmopolites sordidus populations in banana growing regions of the world. 139 pp. PhD thesis, University of Nairobi, Kenya.Google Scholar
Ostmark, H.E. (1974) Economic insect pests of bananas. Annual Review of Entomology 19, 161176.CrossRefGoogle Scholar
Roehrdanz, R.L. (2001) Genetic differentiation of Southeastern Boll Weevil and Thurberia Weevil populations of Anthonomus grandis (Coleoptera: Curculionidae) using mitochondrial DNA. Annals of the Entomological Society of America 94, 928935.CrossRefGoogle Scholar
Rukazambuga, N.D.T.M., Gold, C.S. & Gowen, S.R. (1998) Yield loss in East African highland banana (Musa spp., AAA-EA group) caused by the banana weevil, Cosmopolites sordidus Germar. Crop Protection 17, 581589.CrossRefGoogle Scholar
Scataglini, M.A., Confalonieri, V.A. & Lanteri, A.A. (2000) Dispersal of the cotton boll weevil (Coleoptera: Curculionidae) in South America: evidence of RAPD analysis. Genetica 108, 127136.CrossRefGoogle ScholarPubMed
Schneider, S., Roessli, D. & Excoffier, L. (2000) Arlequin ver 2.000: A software for population genetics and data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.Google Scholar
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical Taxonomy: The Principles and Practice of Numerical Classification. 573 pp. San Francisco, CA, W.H. Freeman & Co.Google Scholar
Szalanski, A.L. (1999) Genetic variation in geographical populations of western and Mexican corn rootworm. Insect Molecular Biology 8, 519525.CrossRefGoogle ScholarPubMed
Taberner, A., Dopazo, J. & Castanera, P. (1997) Genetic characterization of populations of a de novo arisen sugar beet pest, Aubeonymus mariaefranciscae (Coleoptera, Curculionidae), by RAPD analysis. Journal of Molecular Evolution 45, 2431.CrossRefGoogle Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Welsh, J. & McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.CrossRefGoogle ScholarPubMed
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.CrossRefGoogle ScholarPubMed
Wright, S. (1951) The genetical structure of populations. Annals of Eugenics 15, 323354.CrossRefGoogle ScholarPubMed