Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:47:00.683Z Has data issue: false hasContentIssue false

Ontogenetic responses of physiological fitness in Spodoptera frugiperda (Lepidoptera: Noctuidae) in response to repeated cold exposure

Published online by Cambridge University Press:  04 April 2023

Abongile Mbande
Affiliation:
Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
Reyard Mutamiswa
Affiliation:
Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa Tugwi-Mukosi Multidisciplinary Research Institute, Midlands State University, Gweru, Zimbabwe Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
Frank Chidawanyika*
Affiliation:
Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
*
Author for correspondence: Frank Chidawanyika, Email: fchidawanyika@icipe.org

Abstract

In this era of global climate change, intrinsic rapid and evolutionary responses of invasive agricultural pests to thermal variability are of concern given the potential implications on their biogeography and dire consequences on human food security. For insects, chill coma recovery time (CCRT) and critical thermal minima (CTmin), the point at which neuromuscular coordination is lost following cold exposure, remain good indices for cold tolerance. Using laboratory-reared Spodoptera frugiperda (Lepidoptera: Noctuidae), we explored cold tolerance repeated exposure across life stages of this invasive insect pest. Specifically, we measured their CTmin and CCRT across four consecutive assays, each 24 h apart. In addition, we assessed body water content (BWC) and body lipid content (BLC) of the life stages. Our results showed that CTmin improved with repeated exposure in 5th instar larvae, virgin males and females while CCRT improved in 4th, 5th and 6th instar larvae following repeated cold exposure. In addition, the results revealed evidence of cold hardening in this invasive insect pest. However, there was no correlation between cold tolerance and BWC as well as BLC. Our results show capacity for cold hardening and population persistence of S. frugiperda in cooler environments. This suggests potential of fall armyworm (FAW) to withstand considerable harsh winter environments typical of its recently invaded geographic range in sub-Saharan Africa.

Type
Research Paper
Copyright
Copyright © International Centre of Insect Physiology and Ecology, 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro-Tapia, A, Alvarez-Baca, JK, Tougeron, K, Lavandero, B, Le Lann, C and Van Baaren, J (2021) Overwintering strategies and life-history traits of different populations of Aphidius platensis along a latitudinal gradient in Chile. Entomologia Generalis 42, 127145.CrossRefGoogle Scholar
Andersen, JL, Manenti, T, Sørensen, JG, MacMillan, HA, Loeschcke, V and Overgaard, J (2015) How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology 29, 5565.CrossRefGoogle Scholar
Andersen, MK, Folkersen, R, MacMillan, HA and Overgaard, J (2017) Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential. Journal of Experimental Biology 220, 487496.Google ScholarPubMed
Andreadis, SS and Athanassiou, CG (2017) A review of insect cold hardiness and its potential in stored product insect control. Crop Protection 91, 9399.CrossRefGoogle Scholar
Andrew, SC and Kemp, DJ (2016) Stress tolerance in a novel system: genetic and environmental sources of (co)variation for cold tolerance in the butterfly Eurema smilax. Austral Ecology 41, 529537.CrossRefGoogle Scholar
Avargues-Weber, A, Lihoreau, M, Isabel, G and Giurfa, M (2015) Information transfer beyond the waggle dance: observational learning in bees and flies. Frontiers in Ecology and Evolution 3, 24.Google Scholar
Bale, JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 357, 849862.CrossRefGoogle ScholarPubMed
Bazinet, AL, Marshall, KE, Macmillan, HA, Williams, CM and Sinclair, BJ (2010) Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. Journal of Insect Physiology 56, 20062012.CrossRefGoogle ScholarPubMed
Boake, CR (1989) Repeatability: its role in evolutionary studies of mating behavior. Evolutionary Ecology 3, 173182.CrossRefGoogle Scholar
Buckley, LB and Huey, RB (2016) How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative and Comparative Biology 56, 98109.CrossRefGoogle ScholarPubMed
Chapman, JW, Williams, T, Escribano, A, Caballero, P, Cave, RD and Goulson, D (1999) Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecological Entomology 24, 268275.CrossRefGoogle Scholar
Chidawanyika, F and Terblanche, JS (2011) Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology 57, 108117.CrossRefGoogle ScholarPubMed
Chidawanyika, F, Mudavanhu, P and Nyamukondiwa, C (2012) Biologically based methods for pest management in agriculture under changing climates: challenges and future directions. Insects 3, 11711189.CrossRefGoogle ScholarPubMed
Chidawanyika, F, Nyamukondiwa, C, Strathie, L and Fischer, K (2017) Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE 12, e0169371.CrossRefGoogle ScholarPubMed
Chidawanyika, F, Chikowore, G and Mutamiswa, R (2020) Thermal tolerance of the biological control agent Neolema abbreviata and its potential geographic distribution together with its host Tradescantia fluminensis in South Africa. Biological Control 149, 104315.CrossRefGoogle Scholar
Chown, SL and Nicolson, SW (2004) Insect Physiological Ecology: Mechanisms and Patterns. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Cock, MJ, Beseh, PK, Buddie, AG, Cafá, G and Crozier, J (2017) Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports 7, 4103.CrossRefGoogle ScholarPubMed
Colinet, H, Nguyen, TTA, Cloutier, C, Michaud, D and Hance, T (2007) Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology 37, 11771188.CrossRefGoogle ScholarPubMed
Cox, J, Schubert, AM, Travisano, M and Putonti, C (2010) Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evolutionary Biology 10, 111.CrossRefGoogle ScholarPubMed
Day, R, Abrahams, P, Bateman, M, Beale, T, Clottey, V, Cock, M, Colmenarez, Y, Corniani, N, Early, R, Godwin, J and Gomez, J (2017) Fall armyworm: impacts and implications for Africa. Outlooks on Pest Management 28, 196201.CrossRefGoogle Scholar
Du Plessis, H, Schlemmer, ML and Van den Berg, J (2020) The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11, 228.CrossRefGoogle ScholarPubMed
Early, R, González-Moreno, P, Murphy, ST and Day, R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40, 2550.CrossRefGoogle Scholar
Elnitsky, MA, Hayward, SA, Rinehart, JP, Denlinger, DL and Lee, RE Jr (2008) Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic Midge, Belgica Antarctica. Journal of Experimental Biology 211, 524530.CrossRefGoogle ScholarPubMed
Feng, Y, Zhang, L, Li, W, Yang, X and Zong, S (2018) Cold hardiness of overwintering larvae of Sphenoptera sp. (Coleoptera: Buprestidae) in Western China. Journal of Economic Entomology 111, 247251.CrossRefGoogle ScholarPubMed
Goergen, G, Kumar, PL, Sankung, SB, Togola, A and Tamò, M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632.CrossRefGoogle Scholar
Gregory, PJ, Johnson, SN, Newton, AC and Ingram, JS (2009) Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany 60, 28272838.CrossRefGoogle ScholarPubMed
Grinder, RM, Bassar, RD and Auer, SK (2020) Upper thermal limits are repeatable in Trinidadian guppies. Journal of Thermal Biology 90, 102597.CrossRefGoogle ScholarPubMed
Hazell, SP and Bale, JS (2011) Low temperature thresholds: are chill coma and CTmin synonymous? Journal of Insect Physiology 57, 10851089.CrossRefGoogle ScholarPubMed
Hoffmann, AA, Hallas, R, Sinclair, C and Partridge, L (2001) Rapid loss of stress resistance in Drosophila melanogaster under adaptation to laboratory culture. Evolution 55, 436438.Google ScholarPubMed
Izadi, H, Mohammadzadeh, M and Mehrabian, M (2019) Cold tolerance of the Tribolium castaneum (Coleoptera: Tenebrionidae), under different thermal regimes: impact of cold acclimation. Journal of Economic Entomology 112, 19831988.CrossRefGoogle ScholarPubMed
Kaczmarek, A and Boguś, M (2021) The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 9, e12563.CrossRefGoogle Scholar
Kasoma, C, Shimelis, H and Laing, MD (2021) Fall armyworm invasion in Africa: implications for maize production and breeding. Journal of Crop Improvement 35, 111146.CrossRefGoogle Scholar
Kebede, M and Shimalis, T (2018) Out-break, distribution and management of fall armyworm, Spodoptera frugiperda JE Smith in Africa: the status and prospects. Academy of Agricultural Journal 3, 551568.Google Scholar
Keosentse, O, Mutamiswa, R, Du Plessis, H and Nyamukondiwa, C (2021) Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: implications for overwintering. Austral Entomology 60, 400410.CrossRefGoogle Scholar
Le Bourg, E (2007) Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster. Biogerontology 8, 431444.CrossRefGoogle ScholarPubMed
Lee, RE Jr. (2010) A primer on insect cold-tolerance. In Denlinger, DL and Lee, RE (eds), Insect Low Temperature Biology New York: Cambridge University Press, pp. 334.CrossRefGoogle Scholar
Lee, RE Jr, Chen, C-P and Denlinger, DL (1987) A rapid cold-hardening process in insects. Science (New York, N.Y.) 238, 14151417.CrossRefGoogle ScholarPubMed
Leroi, AM, Bennett, AF and Lenski, RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proceedings of the National Academy of Sciences 91, 19171921.CrossRefGoogle ScholarPubMed
Lu, Y and Adang, MJ (1996) Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Florida Entomologist 79, 4855.CrossRefGoogle Scholar
Lynch, HJ, Rhainds, M, Calabrese, JM, Cantrell, S, Cosner, C and Fagan, WF (2014) How climate extremes not means define a species' geographic range boundary via a demographic tipping point. Ecological Monographs 84, 131149.CrossRefGoogle Scholar
Marshall, KE and Sinclair, BJ (2010) Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences 277, 963969.CrossRefGoogle Scholar
Marshall, KE and Sinclair, BJ (2012) The impacts of repeated cold exposure on insects. Journal of Experimental Biology 215, 16071613.CrossRefGoogle ScholarPubMed
Milton, CC and Partridge, L (2008) Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster. Journal of Insect Physiology 54, 3240.CrossRefGoogle Scholar
Mitchell, KA, Boardman, L, Clusella-Trullas, S and Terblanche, JS (2017) Effects of nutrient and water restriction on thermal tolerance: a test of mechanisms and hypotheses. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology 212, 1523.CrossRefGoogle ScholarPubMed
Morgan, R, Finnøen, MH and Jutfelt, F (2018) CTmax is repeatable and doesn't reduce growth in zebrafish. Scientific Reports 8, 18.CrossRefGoogle ScholarPubMed
Mutamiswa, R, Machekano, H, Chidawanyika, F and Nyamukondiwa, C (2018) Thermal resilience may shape population abundance of two sympatric congeneric Cotesia species (Hymenoptera: Braconidae). PLoS ONE 13, e0191840.CrossRefGoogle ScholarPubMed
Mutamiswa, R, Machekano, H, Chidawanyika, F and Nyamukondiwa, C (2019) Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Journal of Thermal Biology 79, 8594.CrossRefGoogle ScholarPubMed
Näslund, J (2021) Behavioural repeatability in larval Limnephilus lunatus Curtis, 1834 (Trichoptera) in an open-field test. Aquatic Insects 42, 6277.CrossRefGoogle Scholar
Nboyine, JA, Kusi, F, Abudulai, M, Badii, BK, Zakaria, M, Adu, GB, Haruna, A, Seidu, A, Osei, V, Alhassan, S and Yahaya, A (2020) A new pest, Spodoptera frugiperda (JE Smith), in tropical Africa: Its seasonal dynamics and damage in maize fields in northern Ghana. Crop Protection 127, 104960.CrossRefGoogle Scholar
Neal, AS, Diaz, R, Qureshi, JA and Cave, RD (2021) Adult cold tolerance and potential North American distribution of Myllocerus undecimpustulatus undatus (Coleoptera: Curculionidae). Biological Invasions 23, 37193731.CrossRefGoogle Scholar
Niemelä, PT and Dingemanse, NJ (2017) Individual versus pseudo-repeatability in behaviour: lessons from translocation experiments in a wild insect. Journal of Animal Ecology 86, 10331043.CrossRefGoogle Scholar
Nyamukondiwa, C and Terblanche, JS (2009) Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. Journal of Thermal Biology 34, 406414.CrossRefGoogle Scholar
Nyamukondiwa, C, Chidawanyika, F, Machekano, H, Mutamiswa, R, Sands, B, Mgidiswa, N and Wall, R (2018) Climate variability differentially impacts thermal fitness traits in three Coprophagic beetle species. PLoS ONE 13, e0198610.CrossRefGoogle ScholarPubMed
Nyamukondiwa, C, Machekano, H, Chidawanyika, F, Mutamiswa, R, Ma, G and Ma, CS (2022) Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Current Opinion in Insect Science 50, 100878.CrossRefGoogle ScholarPubMed
O'Donnell, MJ, Regish, AM, McCormick, SD and Letcher, BH (2020) How repeatable is CTmax within individual brook trout over short- and long-time intervals? Journal of Thermal Biology 89, 102559.CrossRefGoogle Scholar
O'Neill, E, Davis, HE and MacMillan, HA (2021) A lack of repeatability creates the illusion of a trade-off between basal and plastic cold tolerance. Proceedings of the Royal Society B 288, 20212121.CrossRefGoogle ScholarPubMed
Phophi, MM, Mafongoya, P and Lottering, S (2020) Perceptions of climate change and drivers of insect pest outbreaks in vegetable crops in Limpopo province of South Africa. Climate 8, 27.CrossRefGoogle Scholar
Prasanna, BM, Huesing, JE, Peschke, Eddy R (2018) Fall armyworm in Africa: A Guide for Integrated Pest Management, 1st edition. Mexico, CDMX: CIMMYT.Google Scholar
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/.Google Scholar
Renault, D, Nedved, O, Hervant, F and Vernon, P (2004) The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiological Entomology 29, 139145.CrossRefGoogle Scholar
Sinclair, BJ (2015) Linking energetics and overwintering in temperate insects. Journal of Thermal Biology 54, 511.CrossRefGoogle ScholarPubMed
Sinclair, BJ and Marshall, KE (2018) The many roles of fats in overwintering insects. Journal of Experimental Biology 221, jeb161836.CrossRefGoogle ScholarPubMed
Sinclair, BJ and Marshall, KE (2018) The many roles of fats in overwintering insects. Journal of Experimental Biology 221, jeb161836. doi: 10.1242/jeb.161836.CrossRefGoogle ScholarPubMed
Sinclair, BJ, Ferguson, LV, Salehipour-Shirazi, G and MacMillan, HA (2013) Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integrative and Comparative Biology 53, 545556.CrossRefGoogle ScholarPubMed
Sinclair, BJ, Alvarado, LEC and Ferguson, LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. Journal of Thermal Biology 53, 180197.CrossRefGoogle ScholarPubMed
Storey, KB and Storey, JM (2012) Insect cold hardiness: metabolic, gene, and protein adaptation. Canadian Journal of Zoology 90, 456475.CrossRefGoogle Scholar
Tarusikirwa, VL, Mutamiswa, R, Chidawanyika, F and Nyamukondiwa, C (2020) Cold hardiness of the South American tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae): both larvae and adults are chill-susceptible. Pest Management Science 77, 184193.CrossRefGoogle ScholarPubMed
Teets, NM and Denlinger, DL (2013) Physiological mechanisms of seasonal and rapid cold hardening in insects. Physiological Entomology 38, 105116.CrossRefGoogle Scholar
Terblanche, JS, Hoffmann, AA, Mitchell, KA, Rako, L, le Roux, PC and Chown, SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology 214, 37133725.CrossRefGoogle ScholarPubMed
Tollefson, J (2014) The case of the missing heat. Nature 505, 276278.CrossRefGoogle ScholarPubMed
Toxopeus, J, Koštál, V and Sinclair, BJ (2019) Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proceedings of the Royal Society B 286, 20190050.CrossRefGoogle Scholar
Travis, WR (2014) Weather and climate extremes: pacemakers of adaptation? Weather and Climate Extremes 5, 2939.CrossRefGoogle Scholar
Trenti, F, Sandron, T, Guella, G and Lencioni, V (2022) Insect cold tolerance and lipidome: membrane lipid composition of two chironomid species differently adapted to cold. Cryobiology 106, 8490.CrossRefGoogle ScholarPubMed
van Dooremalen, C, Suring, W and Ellers, J (2011) Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod. Journal of Insect Physiology 57, 12671273.CrossRefGoogle Scholar
Vatanparast, M and Park, Y (2022) Cold tolerance strategies of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Science Reports 12, 116.Google ScholarPubMed
Weldon, CW, Nyamukondiwa, C, Karsten, M, Chown, SL and Terblanche, JS (2018) Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Scientific Reports 8, 9849.CrossRefGoogle ScholarPubMed
Williams, CM, Henry, HA and Sinclair, BJ (2015) Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews 90, 214235.CrossRefGoogle ScholarPubMed
Worland, MR (1996) The relationship between water content and cold tolerance in the Arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). European Journal of Entomology 93, 341348.Google Scholar