Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:47:51.997Z Has data issue: false hasContentIssue false

Genetic diversity and insecticide resistance during the growing season in the green peach aphid (Hemiptera: Aphididae) on primary and secondary hosts: a farm-scale study in Central Chile

Published online by Cambridge University Press:  03 February 2014

J.A. Rubiano-Rodríguez
Affiliation:
Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile
E. Fuentes-Contreras
Affiliation:
Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile
C.C. Figueroa
Affiliation:
Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
J.T. Margaritopoulos
Affiliation:
Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou Street, 412 21 Larissa, Greece
L.M. Briones
Affiliation:
Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile
C.C. Ramírez*
Affiliation:
Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile Millennium Nucleus Center in Molecular Ecology and Evolutionary Applications in the Agroecosystems
*
*Author for correspondence Phone: +56 71 200289 Fax: +56 71 200271 E-mail: clramirez@utalca.cl

Abstract

The seasonal dynamics of neutral genetic diversity and the insecticide resistance mechanisms of insect pests at the farm scale are still poorly documented. Here this was addressed in the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Central Chile. Samples were collected from an insecticide sprayed peach (Prunus persica L.) orchard (primary host), and a sweet-pepper (Capsicum annum var. grossum L.) field (secondary host). In addition, aphids from weeds (secondary hosts) growing among these crops were also sampled. Many unique multilocus genotypes were found on peach trees, while secondary hosts were colonized mostly by the six most common genotypes, which were predominantly sensitive to insecticides. In both fields, a small but significant genetic differentiation was found between aphids on the crops vs. their weeds. Within-season comparisons showed genetic differentiation between early and late season samples from peach, as well as for weeds in the peach orchard. The knock-down resistance (kdr) mutation was detected mostly in the heterozygote state, often associated with modified acetylcholinesterase throughout the season for both crops. This mutation was found in high frequency, mainly in the peach orchard. The super-kdr mutation was found in very low frequencies in both crops. This study provides farm-scale evidence that the aphid M. persicae can be composed of slightly different genetic groups between contiguous populations of primary and secondary hosts exhibiting different dynamics of insecticide resistance through the growing season.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguayo, M., Pauchard, A., Azócar, G. & Parra, O. (2009) Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: Entendiendo la dinámica espacial y temporal del paisaje. Revista Chilena de Historia Natural 82, 361374.CrossRefGoogle Scholar
Anstead, J.A., Williamson, M.S., Eleftherianos, L. & Denholm, I. (2004) High-throughput detection of knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR. Insect Biochemistry and Molecular Biology 34, 871877.Google Scholar
Anstead, J.A., Mallet, J. & Denholm, I. (2007) Temporal and spatial incidence of alleles conferring knockdown resistance to pyrethroids in the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae), and their association with other insecticide resistance mechanisms. Bulletin of Entomological Research 97, 243252.Google Scholar
Anstead, J.A., Williamson, M.S. & Denholm, I. (2008) New methods for the detection of insecticide resistant Myzus persicae in the UK suction trap network. Agricultural and Forest Entomology 10, 291295.Google Scholar
Anthony, N., Unruh, T., Ganser, D. & Ffrench-Constant, R. (1998) Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae . Molecular and General Genetics 260, 165175.Google Scholar
Arnaud-Haond, S. & Belkhir, K. (2007) Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes 7, 1517.Google Scholar
Arnaud-Haond, S., Duarte, C.M., Alberto, F. & Serrão, E.A. (2007) Standardizing methods to address clonality in population studies. Molecular Ecology 16, 51155139.Google Scholar
Artigas, J.N. (1994) Entomología Económica. Concepción, Chile. Ediciones Universidad de Concepción.Google Scholar
Bass, C., Puinean, A.M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V.L., Crossthwaite, A.J., Denholm, I., Field, L.M., Foster, S.P., Lind, R., Williamson, M.S. & Slater, R. (2011) Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae . BMC Neuroscience 12, 51.CrossRefGoogle ScholarPubMed
Blackman, R.L. & Eastop, V.F. (2000) Aphids on the World's Crops. An Identification Guide. Chichester, Wiley-Interscience.Google Scholar
Blackman, R.L. & Eastop, V.F. (2007) Taxonomic issues. pp. 129 in van Emden, H.F. & Harrington, R. (Eds) Aphids as Crop Pests. Wallingford, UK, CAB International.Google Scholar
Blackman, R.L., Malarky, G., Margaritopoulos, J.T. & Tsitsipis, J.A. (2007) Distribution of common genotypes of Myzus persicae (Hemiptera : Aphididae) in Greece, in relation to life cycle and host plant. Bulletin of Entomological Research 97, 253263.CrossRefGoogle ScholarPubMed
Borodovsky, M. & McIninch, J. (1993) GeneMark: parallel gene recognition for both DNA strands. Computers and Chemistry 17, 123133.Google Scholar
Brookfield, J.F.Y. (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5, 45344555.Google Scholar
Castañeda, L.E., Barrientos, K., Cortes, P.A., Figueroa, C.C., Fuentes-Contreras, E., Luna-Rudloff, M., Silva, A.X. & Bacigalupe, L.D. (2011) Evaluating reproductive fitness and metabolic costs for insecticide resistance in Myzus persicae from Chile. Physiological Entomology 36, 253260.CrossRefGoogle Scholar
Criniti, A., Mazzoni, E., Cassanelli, S., Cravedi, P., Tondelli, A., Bizzaro, D. & Manicardi, G.C. (2008) Biochemical and molecular diagnosis of insecticide resistance conferred by esterase, MACE, kdr and super-kdr based mechanisms in Italian strains of the peach potato aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology 90, 168174.Google Scholar
Devonshire, A.L., Field, L.M., Foster, S.P., Moores, G.D., Williamson, M.S. & Blackman, R.L. (1998) The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae . Philosophical Transactions of the Royal Society of London 353, 16771684.Google Scholar
Dewar, A.M. (2007) Chemical control. pp. 391411 in van Emden, H.F. & Harrington, R. (Eds) Aphids as Crop Pests. Wallingford, UK, CAB International.Google Scholar
Eleftherianos, I., Foster, S.P., Williamson, M.S. & Denholm, I. (2008) Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research 98, 183191.CrossRefGoogle ScholarPubMed
Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.Google Scholar
Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.Google Scholar
Fenton, B., Malloch, G.L., Navajas, M., Hillier, J. & Birch, A.N. (2003) Clonal composition of the peach-potato aphid Myzus persicae (Homoptera: Aphididae) in France and Scotland: comparative analysis with IGS fingerprinting and microsatellite markers. Annals of Applied Biology 142, 255267.CrossRefGoogle Scholar
Fenton, B., Malloch, G.L., Woodford, J.A.T., Foster, S.P., Anstead, J., Denholm, I., King, L. & Pickup, J. (2005) The attack of the clones: tracking the movement of insecticide-resistant peach-potato aphids Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research 95, 483494.CrossRefGoogle ScholarPubMed
Fenton, B., Margaritopoulos, J.T., Malloch, G.L. & Foster, S.P. (2010) Micro-evolutionary change in relation to insecticide resistance in the peach-potato aphid, Myzus persicae . Ecological Entomology 35, 131146.Google Scholar
Field, L.M. & Devonshire, A.L. (1998) Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochemical Journal 330, 169173.CrossRefGoogle ScholarPubMed
Field, L.M., Devonshire, A.L. & Forde, B.G. (1988) Molecular evidence that insecticide resistance in peach potato aphids (Myzus persicae Sulzer) results from amplification of an esterase gene. Biochemical Journal 251, 309312.CrossRefGoogle Scholar
Foster, S.P., Denholm, I. & Devonshire, A.L. (2000) The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Protection 19, 873879.Google Scholar
Foster, S.P., Harrington, R., Dewar, A.M., Denholm, I. & Devonshire, A.L. (2002) Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Hemiptera: Aphididae). Pest Management Science 58, 895907.Google Scholar
Foster, S.P., Devine, G. & Devonshire, A.L. (2007) Insecticide resistance. pp. 261285 in van Emden, H.F. & Harrington, R. (Eds) Aphids as Crop Pests. Wallingford, UK, CAB International.Google Scholar
Fuentes-Contreras, E., Figueroa, C.C., Reyes, M., Briones, L.M. & Niemeyer, H.M. (2004) Genetic diversity and insecticide resistance of Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bulletin of Entomological Research 94, 1118.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E., Basoalto, E., Sandoval, C., Pavez, P., Leal, C., Burgos, R. & Muñoz, C. (2007) Evaluation of efficacy, residual and knock down effects of pretransplant applications of nicotinoid and nicotinoid-pyrethroid insecticide mixtures for the control of Myzus persicae nicotianae (Hemiptera : Aphididae) on tobacco. Agricultura Técnica 67, 1622.Google Scholar
Fuentes-Contreras, E., Silva, A.X., Bacigalupe, L., Foster, S.P., Unruh, T.R. & Figueroa, C.C. (2013) Survey of resistance to four insecticides and their associated mechanisms in different genotypes of the green peach aphid (Hemiptera: Aphididae) from Chile. Journal of Economic Entomology 106, 400407.CrossRefGoogle ScholarPubMed
Goudet, J. (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485486.Google Scholar
Guillemaud, T., Mieuzet, L. & Simon, J.C. (2003 a) Spatial and temporal genetic variability in French populations of the peach-potato aphid, Myzus persicae . Heredity 9, 143152.Google Scholar
Guillemaud, T., Brun, A., Anthony, N., Sauge, M.H., Boll, R., Delorme, R., Fournier, D., Lapchin, L. & Vanlerberghe-Masutti, F. (2003 b) Incidence of insecticide resistance alleles in sexually-reproducing populations of the peach–potato aphid Myzus persicae (Hemiptera: Aphididae) from southern France. Bulletin of Entomological Research 93, 289297.Google Scholar
Halkett, F., Plantegenest, M., Prunier-Leterme, N., Mieuzet, L., Delmotte, F., Simon, J.C. (2005) Admixed sexual and facultatively asexual aphid lineages at mating sites. Molecular Ecology 14, 325336.Google Scholar
Irwin, M.E., Kampmeier, G.E. & Weisser, W.W. (2007) Aphid movement: process and consequences. pp. 153186 in van Emden, H.F. & Harrington, R. (Eds) Aphids as Crop Pests. Wallingford, UK, CAB International.Google Scholar
Kasprowicz, L., Malloch, G.L., Pickup, J. & Fenton, B. (2008) Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agricultural and Forest Entomology 10, 91100.CrossRefGoogle Scholar
Loxdale, H.D. & Lushai, G. (2007) Population genetic issues: the unfolding story using molecular markers. pp. 3167 in van Emden, H.F. & Harrington, R. (Eds) Aphids as Crop Pests. Wallingford, CABI.CrossRefGoogle Scholar
Loxdale, H.D., Schoefl, G., Wiesner, K.R., Nyabuga, F.N., Heckel, D.G. & Weisser, W.W. (2011) Stay at home aphids: comparative spatial and seasonal metapopulation structure and dynamics of two specialist tansy aphid species studied using microsatellite markers. Biological Journal of the Linnean Society 104, 838865.Google Scholar
Malloch, G.L., Highet, F., Kasprowicz, L., Pickup, J., Neilson, R. & Fenton, B. (2006) Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps. Bulletin of Entomological Research 96, 573582.CrossRefGoogle ScholarPubMed
Margaritopoulos, J.T., Tsitsipis, J.A., Goudoudaki, S. & Blackman, R.L. (2002) Life cycle variation of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Greece. Bulletin of Entomological Research 92, 309320.Google Scholar
Margaritopoulos, J.T., Skouras, P.J., Nikolaidou, P., Manolikaki, J., Maritsa, K., Tsamandani, K., Kanavaki, O.M., Bacandritsos, N., Zarpas, K.D. & Tsitsipis, J.A. (2007) Insecticide resistance status of Myzus persicae (Hemiptera: Aphididae) populations from peach and tobacco in mainland Greece. Pest Management Science 63, 821829.Google Scholar
Martínez-Torres, D., Foster, S.P., Field, L.M., Devonshire, A.L. & Williamson, M.S. (1999) A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Molecular Biology 8, 339346.Google Scholar
Massonnet, B., Weisser, W.W. (2004) Patterns of genetic differentiation between populations of the specialized herbivore Macrosiphoniella tanacetaria (Homoptera, Aphididae). Heredity 93, 577584.Google Scholar
Moores, G.D., Devine, G.J. & Devonshire, A.L. (1994) Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus-persicae and Myzus-nicotianae . Pesticide Biochemistry and Physiology 49, 114120.Google Scholar
Nabeshima, T., Kozaki, T., Tomita, T. & Kono, Y. (2003) An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae . Biochemical and Biophysical Research Communications 307, 1522.Google Scholar
Orantes, L.C., Zhang, W., Mian, M.A.R. & Michel, A.P. (2012) Maintaining genetic diversity and population panmixia through dispersal and not gene flow in a holocyclic heteroecious aphid species. Heredity 109, 127134.Google Scholar
Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S. & Bass, C. (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae . Plos Genetics 6, e1000999.Google Scholar
Puinean, A.M., Elias, J., Slater, R., Warren, A., Field, L.M., Williamson, M.S. & Bass, C. (2013) Development of a high-throughput real-time PCR assay for the detection of the R81T mutation in the nicotinic acetylcholine receptor of neonicotinoid-resistant Myzus persicae . Pest Management Science 69, 195199.Google Scholar
Raymond, M. & Rousset, F. (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.Google Scholar
Sanchez, J.A., La-Spina, M., Guirao, P. & Cánovas, F. (2013) Inferring the population structure of Myzus persicae in diverse agroecosystems using microsatellite markers. Bulletin of Entomological Research 103, 473484.Google Scholar
Schuelke, M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18, 233234.Google Scholar
Silva, A.X., Bacigalupe, L.D., Luna-Rudloff, M. & Figueroa, C.C. (2012 a) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: costs and benefits. Plos ONE 7, e36810.CrossRefGoogle ScholarPubMed
Silva, A.X., Jander, G., Samaniego, H., Ramsey, J.S. & Figueroa, C.C. (2012 b) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: a transcriptomic survey. Plos ONE 7, e36366.Google Scholar
Simon, J.C., Stoeckel, S. & Denis, T. (2010) Evolutionary and functional insights into reproductive strategies of aphids. Comptes Rendus Biologies 333, 488496.CrossRefGoogle ScholarPubMed
Stenberg, P., Lundmark, M. & Saura, A. (2003) MLGsim: a program for detecting clones using a simulation approach. Molecular Ecology Notes 3, 329331.Google Scholar
Sunnucks, P. & Hales, D.F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510524.Google Scholar
Sunnucks, P., De Barro, P.J., Lushai, G., Maclean, N. & Hales, D.F. (1997) Genetic structure of an aphid studied using microsatellite: cyclic parthenogenesis, differentiated lineages, and host specialization. Molecular Ecology 6, 10591073.CrossRefGoogle ScholarPubMed
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology 4, 535538.Google Scholar
van Toor, R.F., Foster, S.P., Anstead, J.A., Mitchinson, S., Fenton, B. & Kasprowicz, L. (2008) Insecticide resistance and genetic composition of Myzus persicae (Hemiptera: Aphididae) on field potatoes in New Zealand. Crop Protection 27, 236247.Google Scholar
van Toor, R.F., Malloch, G.L., Anderson, E.A., Dawson, G. & Fenton, B. (2013) Insecticide resistance profiles can be misleading in predicting the survival of Myzus persicae genotypes on potato crops following the application of different insecticide classes. Pest Management Science 69, 93103.Google Scholar
Vorburger, C. (2006) Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae . Journal of Evolutionary Biology 19, 97107.Google Scholar
Wang, Y.M., Shen, Z.R., Gao, L.W. & Zhang, G.L. (2008) Seasonal genetic structure in Beijing populations of the grain aphid Sitobion miscanthi (Takahashi): an investigation using microsatellites. Applied Entomology and Zoology 43, 97103.Google Scholar
Wilson, A.C.C., Sunnucks, P., Blackman, R.L. & Hales, D.F. (2002) Microsatellite variation in cyclically parthenogenetic populations of Myzus persicae in south-eastern Australia. Heredity 88, 258266.Google Scholar
Yao, I. & Akimoto, S. (2009) Seasonal changes in the genetic structure of an aphid–ant mutualism as revealed using microsatellite analysis of the aphid Tuberculatus quercicola and the ant Formica yessensis . Journal of Insect Science 9, 9.Google Scholar
Zamoum, T., Simon, J.C., Crochard, D., Ballanger, Y., Lapchin, L., Vanlerberghe-Masutti, F. & Guillemaud, T. (2005) Does insecticide resistance alone account for the low genetic variability of asexually reproducing populations of the peach–potato aphid Myzus persicae? Heredity 94, 630639.Google Scholar
Zúñiga, E. (1969) Huéspedes para Chile del áfido Myzus persicae (Sulzer) (Homoptera: Aphididae). Revista Chilena de Entomología 6, 145146.Google Scholar
Supplementary material: File

Rubiano-Rodríguez Supplementary Material

Table 1S

Download Rubiano-Rodríguez Supplementary Material(File)
File 60.4 KB
Supplementary material: File

Rubiano-Rodríguez Supplementary Material

Table 2S

Download Rubiano-Rodríguez Supplementary Material(File)
File 46.6 KB