Hostname: page-component-6bb9c88b65-znhjv Total loading time: 0 Render date: 2025-07-24T21:05:52.181Z Has data issue: false hasContentIssue false

Evaluation of sublethal effects of tetraniliprole, flupyradifurone, flubendiamide, and spirotetramat insecticides on biological parameters of the ectoparasitoid wasp Habrobracon hebetor Say (Hymenoptera: Braconidae)

Published online by Cambridge University Press:  23 July 2025

Mahdi Fooladi
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Islamic Azad University, Science and Research Branch, Tehran, Iran
Gholamreza Golmohammadi*
Affiliation:
Department of Agricultural Entomology Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran
Ali Ahadiyat
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Islamic Azad University, Science and Research Branch, Tehran, Iran
Kazem Mohammadpour
Affiliation:
Department of Agricultural Entomology Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran
*
Corresponding author: Gholamreza Golmohammadi; Email: ghgolmohammadi@gmail.com

Abstract

The parasitoid wasp Habrobracon hebetor Say (Hymenoptera: Braconidae) is one of the important parasitoids used for the biological control of larval stages of moths such as Pyralidae and Noctuidae, which include major agricultural, orchard, and stored product pests. This wasp species is widely utilised in biological control programmes targeting these economically significant lepidopteran pests. In this study, the sublethal effects of four insecticides (tetranelypyrole, flupyradifurone, flubendiamide, and spirotetramat) on the biological parameters of the parasitoid wasp H. hebetor were investigated using demographic toxicology methods. The parasitoid wasp was reared on larvae VI of the Mediterranean flour moth in a growth chamber (27 ± 2°C, 65 ± 5% RH, and a photoperiod of 16:8 (light:dark) hours). The estimated LC25 values from the bioassay experiments on the adult stage of the wasp were used. The estimated LC25 values were 30.8, 130.8, 807, and 34.2 µg ai/L for tetraniliprole, flupyradifurone, flubendiamide, and spirotetramat pesticides, respectively. The results showed that the net reproductive rates (R0) due to treatment by tetraniliprole, flupyradifurone, flubendiamide, spirotetramat, and control were 50.25, 50.66, 64.72, 57.49, and 71.33 females per generation, respectively. The intrinsic rate of population increase (rm) was 0.226, 0.240, 0.242, 0.238, and 0.259 females/female/generation for tetraniliprole, flupyradifurone, flubendiamide, spirotetramat, and control, respectively. The population parameters calculated included the age-stage age-specific survival rate (lx) and age-specific fecundity of the total population (mx). The demographic toxicology analysis showed that tetraniliprole had the highest toxicity, while flubendiamide had the lowest toxicity to adult wasps. In case of conducting additional field tests and confirming the laboratory results, it can be concluded that the insecticides flupyradifurone and flubendaimide may be suitable options for integrated pest management programs.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abedi, Z, Saber, M, Gharekhani, G and Mehrvar, A (2013) The effects of sublethal doses of pyridalil on life table parameters of the parasitoid Habrobracon hebetor Say (Hym., Braconidae). IAU Entomological Research Journal 5(3), 271282. [In Persian with English summary]Google Scholar
Abedi, Z, Saber, M, Gharekhani, G, Mehrvar, A and Mahdavi, V (2012) Effects of azadirachtin, cypermethrin, methoxyfenozide and pyridalil on functional response of Habrobracon hebetor Say (Hym: Braconidae). Journal of Plant Protection Research 52(3), 353358. doi:10.2478/v10045-012-0058-8.CrossRefGoogle Scholar
Ahmadpour, R, Rafiee-Dastjerdi, H, Naseri, B, Hassanpour, M, Ebadollahi, A and Mahdavi, V (2021) Lethal and sublethal toxicity of some plant-derived essential oils in ectoparasitoid wasp, Habrobracon hebetor Say (Hymenoptera: Braconidae). International Journal of Tropical Insect Science 41. doi:10.1007/s42690-020-00247-z.CrossRefGoogle Scholar
Aktar, MW, Sengupta, D and Chowdhury, A (2009) Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology 2(1), 112. doi:10.2478/v10102-009-0001-7.CrossRefGoogle ScholarPubMed
Alan, JD and Daniel, RE (1982) Life table evaluation of chronic exposure of Eurytemora affinis (Copepoda) to kepone. Marine Biology 66, 179184.10.1007/BF00397191CrossRefGoogle Scholar
Asadi, A, Karimi, J and Abbasipour, H (2018a) The effect of sublethal concentrations of malathion on some biological parameters of the ectoparasitoid wasp, Habrobracon hebetor (Say, 1836). Acta Agricultural Slovonica 111(3), 639646. doi:10.14720/aas.2018.111.3.12.Google Scholar
Asadi, M (2022) Effects of different pesticides on the biological control agent, Habrobracon hebetor Say (Hymenoptera: Braconidae): A review. Asian Journal of Agricultural and Horticultural Research 9(3), 4756. doi:10.9734/ajahr/2022/v9i330146.CrossRefGoogle Scholar
Asadi, M, Rafiee-Dastjerdi, H, Nouri-Ganbalani, G, Naseri, B and Hassanpour, M (2018b) The effects of plant essential oils on the functional response of Habrobracon hebetor Say (Hymenoptera: Braconidae) to its host. Invertebrate Survival Journal 15(1), 169182. doi:10.25431/1824-307X/isj.v15i1.169-182.Google Scholar
Attaran, MR (1996) Effect of laboratory hosts on the biological attributes of parasitoid wasp, Habrobarcon hebetor (Hymenoptera: Braconidae). M.Sc. thesis, College of Agriculture, Tabiat Modarres University, 83 pp. [In Persian with English summary]Google Scholar
Biondi, A, Zappalà, L, Stark, JD and Desneux, N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 8(9), e76548.10.1371/journal.pone.0076548CrossRefGoogle ScholarPubMed
Carey, JR (1993) Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press, Oxford, 205.10.1093/oso/9780195066876.001.0001CrossRefGoogle Scholar
Darwish, E, El-Shazly, M and El-Sherif, H (2003) The choice of probing site by Bracon hebetor Say (Hymenoptera: Braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Product Research 39, 265276.10.1016/S0022-474X(02)00023-1CrossRefGoogle Scholar
Desneux, N, Decourtye, A and Delpuech, JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106. doi:10.1146/annurev.ento.52.110405.091440.CrossRefGoogle ScholarPubMed
Elzen, GW, Maldonado, SN and Rojas, MG (2000) Lethal and sublethal effects of insecticides and an insect growth regulator on the boll weevil (Coleoptera: Curculionidae) ectoparasitoid Catolaccus grandis (Hymenoptera: Pteromalidae). Journal of Economic Entomology 93, 300303.10.1603/0022-0493-93.2.300CrossRefGoogle Scholar
Endo, S and Tsurumachi, M (2001) Insecticide susceptibility of the brown planthopper and the white-back planthopper collected from Southeast Asia. Journal of Pesticide Science 26(1), 8286.10.1584/jpestics.26.82CrossRefGoogle Scholar
Faal-mohammadali, H, Seraj, AA and Talebi-Jahromi, K (2013) Effects of traditional insecticides on Habrobracon hebetor (Hymenoptera: Braconidae): Bioassay and life-table assays. Archives of Phytopathology & Plant Protection 47(9), 10891102. doi:10.1080/03235408.2013.830505.CrossRefGoogle Scholar
Fatima, M, Tariq, M and Gulzar, A (2013) Effect of flubendiamide and spirotetramat on the haemocytes of American bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pakistan Entomology 35(2), 129135.Google Scholar
Fooladi, M, Golmohammadi, GH and Ghajarieh, H (2015) Lethal and sublethal effects of insecticides azadirachtin, flonicamid, thiacloprid and thiocyclam on parasitoid wasp Habrobracon hebetor. Biocontrol in Plant Protection 3(1), 918. [In Persian with English summary]Google Scholar
Forbes, VE and Calow, P (1999) Is the per capita rate of increase a good measurement of population level-effect in ecotoxicology? Environmental Toxicology and Chemistry 18, 15441556.10.1002/etc.5620180729CrossRefGoogle Scholar
Forouzan, M, Amir, MM and Sahragard, A (2008) Temperature-dependent development of Habrobracon hebetor (Hym.: Braconidae) reared on larvae of Galleria mellonella (Lep.: Pyralidae). Journal of Entomological Society of Iran 28(1), 6778.Google Scholar
Forouzan, M, Sahragard, A and Airmafi, M (2003) Study on the biology of Habrobracon hebetor Say (Hym.: Braconidae) under laboratory. Journal of Entomological Society of Iran 3, 6277.Google Scholar
Jarahi, A, and Safavi, SA (2016) Effects of pupal treatment with Proteus® and Metarhizium anisopliae sensu lato on functional response of Habrobracon hebetor parasitising Helicoverpa armigera in an enclosed experiment system. Biocontrol Science and Technology 26(2), 206216. doi:10.1080/09583157.2015.1088933.CrossRefGoogle Scholar
Mahdavi, V, Saber, M, Rafiee-Dastjerdi, H and Mehrvar, A (2011) Comparative study of the population level effects of carbaryl and abamectin on larval ectoparasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae). BioControl 56(6), 823830. doi:10.1007/s10526-011-9356-8.CrossRefGoogle Scholar
Mbuji, AL, Xue, Z, Guo, M, Li, M, Lv, S and Zhang, L (2024) Resistance and fitness costs of the Helicoverpa armigera after selection with the tetraniliprole newly developed diamide insecticide. Crop Protection 179, .10.1016/j.cropro.2024.106622CrossRefGoogle Scholar
Quandahor, P, Kim, L, Kim, M, Lee, K, Kusi, F and Jeong, IH (2024) Effects of agricultural pesticides on decline in insect species and individual numbers. Environments 11(8), 182. doi:10.3390/environments11080182.CrossRefGoogle Scholar
Rafiee-Dastjerdi, H, Hassanpour, M, Nouri-Ganbalani, G, Golizadeh, A and Sarmadi, S (2012) Sublethal effects of indoxacarb, imidacloprid and deltamethrin on life table parameters of Habrobracon hebetor (Hymenoptera: Braconidae) in pupal stage treatment. Journal of Crop Protection 1(3), 221228.Google Scholar
Rafiee Dastjerdi, H, Hejazi, J, Nouri Ganbalani, G and Saber, M (2008) Toxicity of some biorational and conventional insecticides to cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) and its ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Entomological Society of Iran 28(1), 2737.Google Scholar
Rashidi, F, Nouri-Ganbalani, G and Imani, S (2018) Sublethal effects of some insecticides on functional response of Habrobracon hebetor (Hymenoptera: Braconidae) when reared on two lepidopteran hosts. Journal of Economic Entomology 111(3), 11041111.10.1093/jee/toy069CrossRefGoogle ScholarPubMed
Razmjou, J, Mahdavi, V, Rafiee-Dastjerdi, H, Farhoomand, A and Molapour, S (2018) Insecticidal activities of some essential oils against larval ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Crop Protection 7(2), 151159. https://doi.org/20.1001.1.22519041.2018.7.2.8.3.Google Scholar
Rezaei, M, Gheibi, M, Hesami, SH and Zohdi, H (2018) Effects of lethal and sub-lethal concentrations of Biscaya®, Neem azal® and Tondexir® on biological parameters of Habrobracon hebetor (Hym.: Braconidae) in laboratory condition. Plant Pest Research 8(3), 7588. doi:10.1007/s42690-019-00060-3.Google Scholar
Rezaei, M, Hesami, S, Gheibi, M and Zohdi, H (2019) Effect of lethal and sub-lethal concentrations of three insecticides on some growth parameters of parasitoid wasp, Habrobracon hebetor by contact and poisonous-host method. Journal of Plant Protection 33, 159170. [In Persian with English summary]Google Scholar
Rosenheim, JA and Hoy, MA (1998) Sublethal effects of pesticides on the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). Journal of Economic Entomology 81, 476483.10.1093/jee/81.2.476CrossRefGoogle Scholar
Saber, M and Abedi, Z (2013) Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor. Journal of Pest Science 86, 685693. doi:10.1007/s10340-013-0528-4.CrossRefGoogle Scholar
Sarmadi, S, Nouri-Gonbalani, G, Rafiee-Dastjerdi, H, Hassanpour, M and Farshbaf-Pourabad, R (2010) The effects of imidacloprid, indoxacarb and deltamethrin on some biological and demographic parameters of Habrobracon hebetor Say (Hymenoptera: Braconidae) in adult stage treatment. Munis Entomology and Zoology 5, 646651.Google Scholar
SAS Institute (2002) The SAS System for Windows. Cary, NC: SAS Institute, 58.Google Scholar
Schöller, M, Prozell, SA, Al-Kirshi, G and Reichmuth, C (1997) Towards biological control as a major component of integrated pest management in stored product protection. Journal of Stored Product Research 33, 8197.10.1016/S0022-474X(96)00048-3CrossRefGoogle Scholar
Walthall, WK and Stark, JD (1996) A comparison of acute mortality and population growth rates as endpoints of toxicological effect. Ecotoxicological and Environmental Safety 37, 4552. doi:10.1006/eesa.1997.1521.CrossRefGoogle Scholar
Wang, XQ, Ou, HD, Li, HX, Wei, L, Huang, Y and Yang, MF (2023) Adverse impacts of development on the deltamethrin-exposed host Ephestia elutella (Lepidoptera: Pyralidae) on population parameters of Habrobracon hebetor (Hymenoptera: Braconidae). Crop Protection 167, 106112. doi:10.1016/j.cropro.2023.106211.CrossRefGoogle Scholar