Hostname: page-component-76c49bb84f-sz5hq Total loading time: 0 Render date: 2025-07-06T00:29:44.391Z Has data issue: false hasContentIssue false

Characterisation and expression analysis of extracellular superoxide dismutases of Protohermes xanthodes navás (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos exposure

Published online by Cambridge University Press:  01 July 2025

Xi Wen
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Yun Lu
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Jie Yang
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Yue Zhang
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Xingrui Huang
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Jie Zou
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Mengqing Zhang
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Xihui Wang
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Wei Zhao
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Xinglong Huang*
Affiliation:
College of Biology and Environmental Sciences, Jishou University, Jishou, China
Zhengwei Wu*
Affiliation:
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
*
Corresponding author: Xinglong Huang; Email: hxl@jsu.edu.cn; Zhengwei Wu; Email: zhengwei_wu@126.com
Corresponding author: Xinglong Huang; Email: hxl@jsu.edu.cn; Zhengwei Wu; Email: zhengwei_wu@126.com

Abstract

The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (PxSOD3 and PxSOD5) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect Protohermes xanthodes (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in P. xanthodes larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in P. xanthodes larvae. Furthermore, PxSOD3 and PxSOD5 expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of P. xanthodes by reducing the gene expression and catalytic activity of extracellular SODs.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors have contributed equally to this work and share first authorship

References

Aidlin Harari, O, Santos-Garcia, D, Musseri, M, Moshitzky, P, Patel, M, Visendi, P, Seal, S, Sertchook, R, Malka, O and Morin, S (2020) Molecular evolution of the glutathione s-transferase family in the Bemisia tabaci species complex. Genome Biology and Evolution 12(2), 38573872.10.1093/gbe/evaa002CrossRefGoogle ScholarPubMed
Blackney, MJ, Cox, R, Shepherd, D and Parker, JD (2014) Cloning and expression analysis of Drosophila extracellular Cu Zn superoxide dismutase. Bioscience Reports 34(6), e00164.10.1042/BSR20140133CrossRefGoogle ScholarPubMed
Cao, X, Wang, Y, Rogers, J, Hartson, S, Kanost, MR and Jiang, H (2020) Changes in composition and levels of hemolymph proteins during metamorphosis of Manduca sexta. Insect Biochemistry and Molecular Biology 127, 103489.10.1016/j.ibmb.2020.103489CrossRefGoogle ScholarPubMed
Cardoso, RM, Silva, CH, Ulian de Araújo, AP, Tanaka, T, Tanaka, M and Garratt, RC (2004) Structure of the cytosolic Cu, Zn superoxide dismutase from Schistosoma mansoni. Acta Crystallographica Section D: Biological Crystallography 60(9), 15691578.10.1107/S0907444904016798CrossRefGoogle ScholarPubMed
Carlsson, LM, Marklund, SL and Edlund, T (1996) The rat extracellular superoxide dismutase dimer is converted to a tetramer by the exchange of a single amino acid. Proceedings of the National Academy of Sciences of the United States of America 93(11), 52195222.10.1073/pnas.93.11.5219CrossRefGoogle ScholarPubMed
Corona, M and Robinson, GE (2006) Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Molecular Biology 15(5), 687701.10.1111/j.1365-2583.2006.00695.xCrossRefGoogle ScholarPubMed
de Beeck, LO, Verheyen, J and Stoks, R (2018) Strong differences between two congeneric species in sensitivity to pesticides in a warming world. Science of the Total Environment 618, 6069.10.1016/j.scitotenv.2017.10.311CrossRefGoogle Scholar
Di Nica, V, González, ABM, Lencioni, V and Villa, S (2020) Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: An emerging environmental concern for pristine Alpine habitats. Environmental Science and Pollution Research 27(25), 3091830926.10.1007/s11356-019-06467-2CrossRefGoogle ScholarPubMed
Dinh, KV, Janssens, L, Therry, L, Bervoets, L, Bonte, D and Stoks, R (2016) Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Environmental Pollution 218, 634643.10.1016/j.envpol.2016.07.047CrossRefGoogle Scholar
Dong, Y, Jing, M, Shen, D, Wang, C, Zhang, M, Liang, D, Nyawira, KT, Xia, Q, Zuo, K, Wu, S, Wu, Y, Dou, D and Xia, A (2020) The mirid bug Apolygus lucorum deploys a glutathione peroxidase as a candidate effector to enhance plant susceptibility. Journal of Experimental Botany 71(9), 27012712.10.1093/jxb/eraa015CrossRefGoogle ScholarPubMed
Du, Z, Su, H, Wang, W, Ye, L, Wei, H, Peng, Z, Anishchenko, I, Baker, D and Yang, J (2021) The trRosetta server for fast and accurate protein structure prediction. Nature Protocols 16(12), 56345651.10.1038/s41596-021-00628-9CrossRefGoogle ScholarPubMed
Due, AV, Petersen, SV, Valnickova, Z, Østergaard, L, Oury, TD, Crapo, JD and Enghild, JJ (2006) Extracellular superoxide dismutase exists as an octamer. FEBS Letters 580(5), 14851489.10.1016/j.febslet.2006.01.081CrossRefGoogle Scholar
Durand, N, Pottier, MA, Siaussat, D, Bozzolan, F, Maïbèche, M and Chertemps, T (2018) Glutathione-s-transferases in the olfactory organ of the noctuid moth. Spodoptera littoralis, diversity and conservation of chemosensory clades. Frontiers in Physiology 9, 1283.10.3389/fphys.2018.01283CrossRefGoogle ScholarPubMed
Fukuto, TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectivest 87, 245254.10.1289/ehp.9087245CrossRefGoogle ScholarPubMed
Gao, XL, Li, JM, Xu, HX, Yan, GH, Jiu, M, Liu, SS and Wang, XW (2015) Cloning of a putative extracellular Cu/Zn superoxide dismutase and functional differences of superoxide dismutases in invasive and indigenous whiteflies. Insect Science 22(1), 5264.10.1111/1744-7917.12100CrossRefGoogle ScholarPubMed
Gretscher, RR, Streicher, PE, Strauß, AS, Wielsch, N, Stock, M, Wang, D, Boland, W and Burse, A (2016) A common theme in extracellular fluids of beetles: Extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge. Scientific Reports 6, 24082.10.1038/srep24082CrossRefGoogle ScholarPubMed
Gupta, SC, Mishra, M, Sharma, A, Deepak Balaji, TG, Kumar, R, Mishra, RK and Chowdhuri, DK (2010) Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicology & Environmental Safety 73(6), 14151423.10.1016/j.ecoenv.2010.05.013CrossRefGoogle ScholarPubMed
He, Z, Fang, Y, Zhang, F, Liu, Y, Wen, X, Yu, C, Cheng, X, Li, D, Huang, L, Ai, H and Wu, F (2024) Toxic effect of methyl-thiophanate on Bombyx mori based on physiological and transcriptomic analysis. Genes (Basel) 15(10), 1279.10.3390/genes15101279CrossRefGoogle ScholarPubMed
Huang, XL, Fan, DS, Liu, L and Feng, JN (2017) Identification and characterization of glutathione S-transferase genes in the antennae of codling moth (Lepidoptera: Tortricidae). Annals of the Entomological Society of America 110(4), 409416.10.1093/aesa/sax041CrossRefGoogle Scholar
Huang, Y, Zou, S, Zhan, P, Hao, Z, Lu, Q, Jing, W, Li, Y, Xu, Y and Wang, H (2023) Dinotefuran induces oxidative stress and autophagy on Bombyx mori silk gland: Toxic effects and implications for nontarget organisms. Environmental Pollution 336, 122470.10.1016/j.envpol.2023.122470CrossRefGoogle ScholarPubMed
Ikayaja, EO and Arimoro, FO (2024) Organophosphate pesticide residue impact on water quality and changes in macroinvertebrate community in an Afrotropical stream flowing through farmlands. Environmental Monitoring and Assessment 196(5), 489.10.1007/s10661-024-12659-2CrossRefGoogle Scholar
Interaction Profile for: Chlorpyrifos, Lead, Mercury, and Methylmercury (2006) Atlanta (GA): Agency for Toxic Substances and Disease Registry (US).Google Scholar
Ishii, Y, Miura, H, Jo, J, Tsuji, H, Saito, R, Koarai, K, Hagiwara, H, Urushidate, T, Nishikiori, T, Wada, T, Hayashi, S and Takahashi, Y (2022) Radiocesium-bearing microparticles cause a large variation in 137Cs activity concentration in the aquatic insect Stenopsyche marmorata (Tricoptera: Stenopsychidae) in the Ota River, Fukushima, Japan. PLoS One 17(5), e0268629.10.1371/journal.pone.0268629CrossRefGoogle Scholar
Ishikawa, NF, Hayashi, F, Sasaki, Y, Chikaraishi, Y and Ohkouchi, N (2017) Trophic discrimination factor of nitrogen isotopes within amino acids in the dobsonfly Protohermes grandis (Megaloptera: Corydalidae) larvae in a controlled feeding experiment. Ecology and Evolution 7(6), 16741679.10.1002/ece3.2728CrossRefGoogle Scholar
Kalita, MK, Haloi, K and Devi, D (2016) Larval exposure to chlorpyrifos affects nutritional physiology and induces genotoxicity in silkworm philosamia ricini (lepidoptera: saturniidae). Frontiers in Physiology 7, 535.10.3389/fphys.2016.00535CrossRefGoogle ScholarPubMed
Karthick Rajan, D, Mohan, K, Rajarajeswaran, J, Divya, D, Thanigaivel, S and Zhang, S (2024) Toxic effects of organophosphate pesticide monocrotophos in aquatic organisms: A review of challenges, regulations and future perspectives. Environmental Research 244, 117947.10.1016/j.envres.2023.117947CrossRefGoogle ScholarPubMed
Kobayashi, Y, Nojima, Y, Sakamoto, T, Iwabuchi, K, Nakazato, T, Bono, H, Toyoda, A, Fujiyama, A, Kanost, MR and Tabunoki, H (2019) Comparative analysis of seven types of superoxide dismutases for their ability to respond to oxidative stress in Bombyx mori. Scientific Reports 9(1), 2170.10.1038/s41598-018-38384-8CrossRefGoogle ScholarPubMed
Laskowski, RA, Rullmannn, JA, MacArthur, MW, Kaptein, R and Thornton, JM (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR 8(4), 477486.10.1007/BF00228148CrossRefGoogle ScholarPubMed
Liu, X, Hayashi, F and Yang, D (2013) Taxonomic notes on the Protohermes-changninganus species group (megaloptera: corydalidae), with description of two new species. Zootaxa 3722, 569580.10.11646/zootaxa.3722.4.7CrossRefGoogle ScholarPubMed
Macedo, PE, Batista, JES, Souza, LR, Dafre, AL, Farina, M, Kuca, K, Posser, T, Pinto, PM, Boldo, JT and Franco, JL (2024) Drosophila melanogaster as a model organism for screening acetylcholinesterase reactivators. Journal of Toxicology and Environmental Health Part A 87(23), 953972.10.1080/15287394.2024.2401382CrossRefGoogle Scholar
Mamboungou, J, Fernandes, ÉKK, Vieira, LG and Rocha, TL (2024) Hazardous fipronil insecticide effects on aquatic animals’ health: Historical review and trends. Science of the Total Environment 954, 176334.10.1016/j.scitotenv.2024.176334CrossRefGoogle ScholarPubMed
Moustafa, A, Perbandt, M, Liebau, E, Betzel, C and Falke, S (2022) Crystal structure of an extracellular superoxide dismutase from Onchocerca volvulus and implications for parasite-specific drug development. Acta Crystallographica Section F-Structural Biology Communications 78(Pt 6), 232240.10.1107/S2053230X22005350CrossRefGoogle ScholarPubMed
Muñiz-González, AB, Paoli, F, Martínez-Guitarte, JL and Lencioni, V (2021) Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. Environmental Pollution 290, 118061.10.1016/j.envpol.2021.118061CrossRefGoogle ScholarPubMed
Parker, JD, Parker, KM and Keller, L (2004) Molecular phylogenetic evidence for an extracellular Cu Zn superoxide dismutase gene in insects. Insect Molecular Biology 13(6), 587594.10.1111/j.0962-1075.2004.00515.xCrossRefGoogle ScholarPubMed
Parra Morales, LB, Alzogaray, RA, Cichón, L, Garrido, S, Soleño, J and Montagna, CM (2017) Effects of chlorpyrifos on enzymatic systems of Cydia pomonella (lepidoptera: tortricidae) adults. Insect Science 24(3), 455466.10.1111/1744-7917.12307CrossRefGoogle ScholarPubMed
Rivera-Gasperín, SL, Ardila-Camacho, A and Contreras-Ramos, A (2019) Bionomics and ecological services of megaloptera larvae (dobsonflies, fishflies, alderflies). Insects 10(4), 86.10.3390/insects10040086CrossRefGoogle ScholarPubMed
Shi, G, Shen, J, Ren, F and Yang, W (2021) Molecular cloning, expression, and characterization of BmSOD3 in silkworm (Bombyx mori). Archives of Insect Biochemistry and Physiology 106(1), e21744.10.1002/arch.21744CrossRefGoogle ScholarPubMed
Shi, GQ, Yu, QY and Zhang, Z (2012) Annotation and evolution of the antioxidant genes in the silkworm, Bombyx mori. Archives of Insect Biochemistry and Physiology 79(2), 87103.10.1002/arch.21014CrossRefGoogle ScholarPubMed
Shi, GQ, Zhang, Z, Jia, KL, Zhang, K, An, DX, Wang, G, Zhang, BL and Yin, HN (2014) Characterization and expression analysis of peroxiredoxin family genes from the silkworm Bombyx mori in response to phoxim and chlorpyrifos. Pesticide Biochemistry and Physiology 114, 2431.10.1016/j.pestbp.2014.07.007CrossRefGoogle ScholarPubMed
Tang, XY, Yang, Y, Tam, NF, Tao, R and Dai, YN (2019) Pesticides in three rural rivers in Guangzhou, China: Spatiotemporal distribution and ecological risk. Environmental Science and Pollution Research 26(4), 35693577.10.1007/s11356-018-3808-yCrossRefGoogle ScholarPubMed
Tsuchiyama, T, Ito, Y, Taniguchi, M, Katsuhara, M, Miyazaki, H and Kamijima, M (2023) Residue levels of organophosphate pesticides and dialkylphosphates in agricultural products in Japan. Environmental Research 234, 116518.10.1016/j.envres.2023.116518CrossRefGoogle ScholarPubMed
Tukey, JW (1949) Comparing individual means in the analysis of variance. Biometrics 5(2), 99114.10.2307/3001913CrossRefGoogle ScholarPubMed
Verheyen, J, Cuypers, K and Stoks, R (2023) Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. Environmental Pollution 326, 121438.10.1016/j.envpol.2023.121438CrossRefGoogle ScholarPubMed
Wang, Y, Wang, L and Li, Y (2025) Organophosphorus pesticides management strategies: Prohibition and restriction multi-category multi-class models, environmental transformation risks, and special attention list. Toxics 13(1), 16.10.3390/toxics13010016CrossRefGoogle Scholar
Wen, FS, Yang, J, Huang, XR and Huang, XL (2022) Analysis of differential geneexpression of the aquatic insect Protohermes costalis (Walker) (Megaloptera: Corydalidae) in response to cadmium exposure. Environmental Entomology 51(4), 815823.10.1093/ee/nvac041CrossRefGoogle Scholar
Xikeranmu, Z, Abdunasir, M, Ma, J, Tusong, K and Liu, X (2019) Characterization of two copper/zinc superoxide dismutases (Cu/Zn-SODs) from the desert beetle Microdera punctipennis and their activities in protecting E. coli cells against cold. Cryobiology 87, 1527.10.1016/j.cryobiol.2019.03.006CrossRefGoogle ScholarPubMed
Yamamoto, K, Banno, Y, Fujii, H, Miake, F, Kashige, N and Aso, Y (2005) Catalase from the silkworm, Bombyx mori: Gene sequence, distribution, and overexpression. Insect Biochemistry and Molecular Biology 35(4), 277283.10.1016/j.ibmb.2005.01.001CrossRefGoogle ScholarPubMed
Yang, J, Huang, XR, Wen, FS, Huang, XL, Liu, ZX and Zhang, YX (2023) Characterization and expression analysis of glutathione S-transferasegenes from an aquatic predator Protohermes costalis (Megaloptera: Corydalidae) on exposure to cadmium. Journal of Asia-Pacific Entomology 26(2), 102061.10.1016/j.aspen.2023.102061CrossRefGoogle Scholar
Yang, J, Wen, X, Zou, J, Huang, X, Wu, T and Huang, X (2024) De novo transcriptome analysis of protohermes xanthodes navás (megaloptera: corydalidae) reveling the effects of sublethal chlorpyrifos on the expression of cholinergic neuronal genes. Pesticide Biochemistry and Physiology 202, 105948.10.1016/j.pestbp.2024.105948CrossRefGoogle ScholarPubMed
Yang, Y, Ma, S, Yan, Z, Liu, F, Diao, Q and Dai, P (2019) Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environmental Pollution 249, 860867.10.1016/j.envpol.2019.03.077CrossRefGoogle ScholarPubMed
Yuan, HX, Xu, SQ and Sima, YH (2015) Changes in malondialdehyde content, antioxidative enzyme activity, and their gene expression in gonads during different developmental stages of 4-n-nonylphenol-treated Bombyx mori (lepidoptera: bombycidae). Annals Of The Entomological Society Of America 108(2), 193200.10.1093/aesa/sau012CrossRefGoogle Scholar
Zafar, MI, Van Wijngaarden, RP, Roessink, I and Van den Brink, PJ (2011) Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms. Environmental Toxicology and Chemistry 30(6), 13831394.10.1002/etc.509CrossRefGoogle ScholarPubMed
Zhang, LJ, Chen, JL, Yang, BL, Kong, XG, Bourguet, D and Wu, G (2017a) Thermotolerance, oxidative stress, apoptosis, heat-shock proteins and damages to reproductive cells of insecticide-susceptible and -resistant strains of the diamondback moth Plutella xylostella. Bulletin of Entomological Research 107(4), 513526.10.1017/S0007485317000049CrossRefGoogle Scholar
Zhang, Z, Guo, R and Li, M (2017b) Identification, characterization and expression analysis of superoxide dismutase genes in Dastarcus helophoroides (coleoptera: bothrideridae). Gene 606, 2534.10.1016/j.gene.2017.01.003CrossRefGoogle Scholar
Zou, J, Zhang, MQ, Wen, X, Zhang, Y, Li, Z, Yuan, F, Tang, XC, Xiao, SJ, Shen, T, Tian, XR, Huang, XL and Yang, L (2025) Identification and functional characterization of an antennal glutathione S-transferase in Protegira songi. Journal of Asia-Pacific Entomology 28(1), 102362.10.1016/j.aspen.2024.102362CrossRefGoogle Scholar
Supplementary material: File

Wen et al. supplementary material

Wen et al. supplementary material
Download Wen et al. supplementary material(File)
File 24.2 KB