Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T07:07:54.776Z Has data issue: false hasContentIssue false

Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning

Published online by Cambridge University Press:  03 May 2017

G. Giunti
Affiliation:
Department of Agriculture, University “Mediterranea” of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio Calabria, Italy
G. Benelli*
Affiliation:
Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
V. Palmeri
Affiliation:
Department of Agriculture, University “Mediterranea” of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio Calabria, Italy
A. Canale
Affiliation:
Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
*
*Author for correspondence: Phone: +390502216141 Fax: +390502216087 E-mail: benelli.giovanni@gmail.com

Abstract

Olfaction is a key sense routing foraging behaviour in parasitoids. Preferences for food, mate and host stimuli can be innate in parasitic wasps. Alternatively, learning-mediated mechanisms play a crucial role. Females of the braconid parasitoid Psyttalia concolor exploit olfactory cues arising from tephritid hosts and related microhabitats. However, little is known on the olfactory stimuli routing males searching for mates. In this study, we focused on the attractiveness of Bactrocera oleae-induced olive volatiles towards P. concolor males. Furthermore, we evaluated learning occurrence in virgin males, when trained for selected unattractive volatile organic compounds (VOCs) associated with mate rewards. (E)-β-Ocimene, α-pinene and limonene attracted virgin males in Y-tube bioassays. Unattractive VOCs evoked positive chemotaxis after associative learning training. P. concolor males exposed to VOCs during a successful or unsuccessful mating, showed short-term preference for these VOCs (<1 h). However, memory consolidation was strictly dependent on reward value. Indeed, males experiencing a successful mating showed a fast consolidation into protein dependent long-term memory, appearing after 24 h. On the other hand, males experiencing a less valuable training experience (i.e. unsuccessful courtship), did not show consolidated memory after 24 h. Overall, our findings suggest that P. concolor virgin males may exploit VOCs from the host microhabitat to boost their mate searching activity, thus their reproductive success. However, since learning is a costly process, P. concolor males retained durable memories just in presence of a valuable reward, thus avoiding maladaptive behaviours.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeder, J.M. & King, B.H. (2004) Associative learning of color by males of the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Journal of Insect Behavior 17(2), 201213.Google Scholar
Benelli, G. & Canale, A. (2013) Do tephritid-induced fruit volatiles attract males of the fruit flies parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae)?. Chemoecology 23(3), 191199.Google Scholar
Benelli, G., Bonsignori, G., Stefanini, C. & Canale, A. (2012) Courtship and mating behaviour in the fruit fly parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae): the role of wing fanning. Journal of Pest Science 85(1), 5563.Google Scholar
Benelli, G., Revadi, S., Carpita, A., Giunti, G., Raspi, A., Anfora, G. & Canale, A. (2013) Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biological Control 64(2), 116124.Google Scholar
Benelli, G., Stefanini, C., Giunti, G., Geri, S., Messing, R.H. & Canale, A. (2014) Associative learning for danger avoidance nullifies innate positive chemotaxis to host olfactory stimuli in a parasitic wasp. Naturwissenschaften 101(9), 753757.Google Scholar
Benelli, G., Caruso, G., Giunti, G., Cuzzola, A., Saba, A., Raffaelli, A. & Gucci, R. (2015) Changes in olive oil volatile organic compounds induced by water status and light environment in canopies of Olea europaea L. trees. Journal of the Science of Food and Agriculture 95(12), 24732481.CrossRefGoogle ScholarPubMed
Berlocher, S.H. & Feder, J.L. (2002) Sympatric specialization in phytophagous insects: moving beyond controversy? Annual Review of Entomology 47(1), 773815.CrossRefGoogle Scholar
Bleeker, M.A.K., Smid, H.M., Steidle, J.L.M., Kruidhof, H.M., Van Loon, J.J.A. & Vet, L.E.M. (2006) Differences in memory dynamics between two closely related parasitoid wasp species. Animal Behaviour 71(6), 13431350.Google Scholar
Canale, A., Geri, S. & Benelli, G. (2014) Associative learning for host-induced fruit volatiles in Psyttalia concolor (Hymenoptera: Braconidae), a koinobiont parasitoid of tephritid flies. Bulletin of Entomological Research 104(6), 774780.CrossRefGoogle ScholarPubMed
Carrasco, M., Montoya, P., Cruz-lopez, L. & Rojas, J.C. (2005) Response of the fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) to mango fruit volatiles. Environmental Entomology 34(3), 576583.Google Scholar
Danci, A., Inducil, C., Schaefer, P.W. & Gries, G. (2011) Early detection of prospective mates by males of the parasitoid wasp Pimpla disparis Viereck (Hymenoptera: Ichneumonidae). Environmental Entomology 40(2), 211225.CrossRefGoogle Scholar
Du, Y., Poppy, G.M., Powell, W., Pickett, J.A., Wadhams, L.J. & Woodcock, C.M. (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi . Journal of Chemical Ecology 24(8), 13551368.Google Scholar
Dukas, R. (2008) Evolutionary biology of insect learning. Annual Review of Entomology 53, 145160.CrossRefGoogle ScholarPubMed
Eben, A., Benrey, B., Sivinski, J. & Aluja, M. (2000) Host species and host plant effects on preference and performance of Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Environmental Entomology 29(1), 8794.Google Scholar
Ero, M., Neale, C., Hamacek, E., Peek, T. & Clarke, A. (2010) Preference and performance of Diachasmimorpha kraussii (Fullaway) (Hymenoptera: Braconidae) on five commerical fruit species. Journal of Applied Entomology 134, 111.Google Scholar
Fabre, J.H.C., Teixeira de Mattos, A.L. & Miall, B. (1918) The Wonders of Instinct. New York, The Century Co.Google Scholar
Forbes, A.A., Powell, T.H.Q., Stelinski, L.L., Smith, J.J. & Feder, J.L. (2009) Sequential sympatric speciation across trophic levels. Science 323(5915), 776779.Google Scholar
Giunti, G., Benelli, G., Messing, R.H. & Canale, A. (2015 a) Early adult learning affects host preferences in the tephritid parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Journal of Pest Science 89(2), 529537.Google Scholar
Giunti, G., Canale, A., Messing, R.H., Donati, E., Stefanini, C., Michaud, J.P. & Benelli, G. (2015 b) Parasitoid learning: current knowledge and implications for biological control. Biological Control 90, 208219.Google Scholar
Giunti, G., Benelli, G., Conte, G., Mele, M., Caruso, G., Gucci, R., Flamini, G. & Canale, A. (2016 a) VOCs-mediated location of olive fly larvae by the rraconid parasitoid Psyttalia concolor: a multivariate comparison among VOC bouquets from three olive cultivars. Biomed Research International 2016, 7827615. doi: 10.1155/2016/7827615.Google Scholar
Giunti, G., Benelli, G., Flamini, G., Michaud, J.P. & Canale, A. (2016 b) Innate and learned responses of the tephritid parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to olive volatiles induced by Bactrocera oleae (Diptera: Tephritidae) infestation. Journal of Economic Entomology doi: 10.1093/jee/tow184.Google Scholar
Glinwood, R.T., Du, Y.-J. & Powell, W. (1999) Responses to aphid sex pheromones by the pea aphid parasitoids Aphidius ervi and Aphidius eadyi . Entomologia Experimentalis et Applicata 92(2), 227232.Google Scholar
Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton, NJ, Princeton University Press.Google Scholar
Godfray, H.C.J. & Cook, J.M. (1997) Mating systems of parasitoid wasps. pp. 211225 in Choe, J.C. & Crespi, B.J. (Eds) The Evolution of Mating Systems in Insects and Arachnids. Cambridge, Cambridge University Press.Google Scholar
Han, B.Y. & Chen, Z.M. (2002) Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. Journal of Applied Entomology 126(9), 497500.Google Scholar
Hare, J.D. (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annual Review of Entomology 56, 161180.Google Scholar
Henneman, M.L., Dyreson, E.G., Takabayashi, J. & Raguso, R.A. (2002) Response to walnut olfactory and visual cues by the parasitic wasp Diachasmimorpha juglandis . Journal of Chemical Ecology 28(11), 22212244.CrossRefGoogle ScholarPubMed
Hoedjes, K.M., Kruidhof, H.M., Huigens, M.E., Dicke, M., Vet, L.E.M. & Smid, H.M. (2011) Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience. Proceedings. Biological Sciences / The Royal Society 278(1707), 889897.Google Scholar
Hoedjes, K.M., Kralemann, L.E.M., Van Vugt, J.J.F.A., Vet, L.E.M. & Smid, H.M. (2014) Unravelling reward value: the effect of host value on memory retention in Nasonia parasitic wasps. Animal Behaviour 96, 17.Google Scholar
Kaplan, I. (2012 a) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biological Control 60(2), 7789.Google Scholar
Kaplan, I. (2012 b) Trophic complexity and the adaptive value of damage-induced plant volatiles. PLoS Biology 10(11), e1001437.Google Scholar
König, K., Krimmer, E., Brose, S., Gantert, C., Bruschluter, I., König, C., Klopfstein, S., Wendt, I., Baur, H., Krogmann, L. & Steidle, J.L.M. (2015) Does early learning drive ecological divergence during speciation processes in parasitoid wasps? Proceedings. Biological Sciences/The Royal Society 282, 20141850.Google Scholar
Kruidhof, H.M., Pashalidou, F.G., Fatouros, N.E., Figueroa, I.A., Vet, L.E.M., Smid, H.M. & Huigens, M.E. (2012) Reward value determines memory consolidation in parasitic wasps. PLoS ONE 7(8), e39615.Google Scholar
Lima, I.S., House, P.E. & Do Nascimento, R.R. (2001) Volatile substances from male Anastrepha fraterculus Wied. (Diptera: Tephritidae): identification and behavioural activity. Journal Of The Brazilian Chemical Society 12(2), 196201.Google Scholar
Malacrinò, A., Schena, L., Campolo, O., Laudani, F. & Palmeri, V. (2015) Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae . Fungal Ecology 18, 6774.Google Scholar
Malacrinò, A., Schena, L., Campolo, O., Laudani, F., Mosca, S., Giunti, G., Strano, C.P. & Palmeri, V. (2016) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microbial Ecology doi: 10.1007/s00248-016-0864-z.Google Scholar
Malheiro, R., Casal, S., Cunha, S.C., Baptista, P. & Pereira, J.A. (2015) Olive volatiles from portuguese cultivars Cobrançosa, Madural and Verdeal Transmontana: role in oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PloS ONE 10(5), e0125070.Google Scholar
Mazomenos, B.E. & Haniotakis, G.E. (1985) Male olive fruit fly attraction to synthetic sex pheromone components in laboratory and field tests. Journal of Chemical Ecology 11(3), 397405.Google Scholar
Messing, R.H., Klungness, L.M., Jang, E.B. & Nishijima, K.A. (1996) Response of the melon fly parasitoid Pysttalia fletcheri (Hymenoptera: Braconidae) to host-habitat stimuli. Journal of Insect Behavior 9(6), 933945.CrossRefGoogle Scholar
Ngumbi, E., Jordan, M. & Fadamiro, H. (2012) Comparison of associative learning of host-related plant volatiles in two parasitoids with different degrees of host specificity, Cotesia marginiventris and Microplitis croceipes . Chemoecology 22(4), 207215.Google Scholar
Raptopoulos, D., Haniotakis, G., Koutsaftikis, A., Kelly, D. & Mavraganis, V. (1995) Biological activity of chemicals identified from extracts and volatiles of male Rhagoletis cerasi . Journal of Chemical Ecology 21(9), 12871297.Google Scholar
Rocca, J.R., Nation, J.L., Strekowski, L. & Battiste, M.A. (1992) Comparison of volatiles emitted by male Caribbean and Mexican fruit flies. Journal of Chemical Ecology 18(2), 223244.CrossRefGoogle ScholarPubMed
Röse, U.S.R., Lewis, W.J. & Tumlinson, J.H. (1998) Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. Journal of Chemical Ecology 24(2), 303319.Google Scholar
Ruther, J., Meiners, T. & Steidle, J.L.M. (2002 a) Rich in phenomena-lacking in terms. A classification of kairomones. Chemoecology 12(4), 161167.Google Scholar
Ruther, J., Reinecke, A. & Hilker, M. (2002 b) Plant volatiles in the sexual communication of Melolontha hippocastani: response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecological Entomology 27(1), 7683.Google Scholar
Segura, D., Viscarret, M., Carabajal Paladino, L., Ovruski, S. & Cladera, J. (2007) Role of visual information and learning in habitat selection by a generalist parasitoid foraging for concealed hosts. Animal Behaviour 74(1), 131142.Google Scholar
Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2002) Oviposition preferences of herbivores are affected by tritrophic interaction webs. Ecology Letters 5(2), 186192.Google Scholar
Smid, H.M. & Vet, L.E.M. (2016) The complexity of learning , memory and neural processes in an evolutionary ecological context. Current Opinion in Insect Science 15, 6169.Google Scholar
Takasu, K., Rains, G.C. & Lewis, W.J. (2007) Comparison of detection ability of learned odors between males and females in the larval parasitoid Microplitis croceipes . Entomologia Experimentalis et Applicata 122(3), 247251.Google Scholar
Villagra, C.A., Vasquez, R.A. & Niemeyer, H.M. (2005) Associative odour learning affects mating behaviour in Aphidius ervi males (Hymenoptera: Braconidae). European Journal of Entomology 102(3), 557559.Google Scholar
Villagra, C.A., Vásquez, R.A. & Niemeyer, H.M. (2008) Olfactory conditioning in mate searching by the parasitoid Aphidius ervi (Hymenoptera: Braconidae). Bulletin of Entomological Research 98(4), 371377.Google Scholar
Wäckers, F.L. & Lewis, W.J. (1999) A comparison of color-, shape- and pattern-learning by the hymenopteran parasitoid Microplitis croceipes . Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 184(4), 387393.Google Scholar