Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:42:23.806Z Has data issue: false hasContentIssue false

Upregulation of Atg5 and AIF gene expression in synchronization with programmed cellular death events in integumental epithelium of Bombyx mori induced by a dipteran parasitoid infection

Published online by Cambridge University Press:  23 September 2014

J. Anitha
Affiliation:
Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Carmelram. P.O., Bangalore 560035, Karnataka, India
A.R. Pradeep*
Affiliation:
Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Carmelram. P.O., Bangalore 560035, Karnataka, India
V. Sivaprasad
Affiliation:
Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Carmelram. P.O., Bangalore 560035, Karnataka, India
*
*Author for correspondence Phone: 91+80+28440651 Fax: 91+80+28439597 E-mail: arpradeepnair@gmail.com

Abstract

Infection of the commercially important silkworm, Bombyx mori by a tachnid parasitoid, Exorista bombycis induced activation of genes and cellular responses associated with apoptosis in integumental epithelial cells. Composite cellular profile showed initial autophagy, intermediate endoplasmic reticulum degranulation and deformed nucleus as well as later DNA fragmentation indicating apoptosis. Two cell death-associated proteins, autophagy 5-like (Atg5L) and apoptosis-inducing factor (AIF), in addition to caspase, are identified from the infected integumental epithelium through mass spectrometric analysis. Genes encoding these proteins showed age-dependent activation after the infection as revealed by quantitative expression analysis. Atg5 showed early upregulation in association with signs of autophagy whereas AIF showed late upregulation in association with DNA condensation and fragmentation. Expression of AIF showed negative correlation with that of Atg5 after the infection. On the other hand, in control, caspase expression showed positive correlation with AIF expression indicative of regulated expression in normal larval epithelium, which was absent after infection. Activation of Atg5, AIF and caspase genes in close association with different cell death events revealed the synchronized differential expression of apoptosis-associated genes in response to the macroparasitism. Enhanced expression of Atg5, AIF and caspase genes coupled with the appearance of cell death symptoms indicate parasitism-induced activation of genetic machinery to modulate cell death events in the epithelium, which was hither to unknown in invertebrate systems.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anitha, J., Pradeep, A.R., Awasthi, A.K., Murthy, G.N., Ponnuvel, K.M., Sasibhushan, S. & Rao, G.C. (2013) Coregulation of host-response genes in integument: switchover of gene expression correlation pattern and impaired immune responses induced by dipteran parasite infection in the silkworm, Bombyx mori . Journal of Applied Genetics 55, 209221.Google Scholar
Berry, D.L. & Baehrecke, E.H. (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila . Cell 131, 11371148.Google Scholar
Cande, C., Cecconi, F., Dessen, P. & Kroemer, G. (2002 a) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? Journal of Cell Science 115, 47274734.CrossRefGoogle Scholar
Cande, C., Cohen, I., Daugas, E., Ravagnan, L., Larochette, N., Zamzami, N. & Kroemer, G. (2002 b) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84, 215222.Google Scholar
Cande´, C., Vahsen, N., Garrido, C. & Kroemer, G. (2004) Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death and Differentiation 11, 591595.CrossRefGoogle Scholar
Castino, R., Isidoro, C. & Murphy, D. (2005) Autophagy-dependent cell survival and cell death in an autosomal dominant familial neurohypophyseal diabetes insipidus in vitro model. FASEB Journal 19, 10241026.Google Scholar
Daugas, E., Susin, S.A., Zamzami, N., Ferri, K.F., Irinopoulou, T., Larochette, N., Prévost, M.C., Leber, B., Andrews, D., Penninger, J. & Kroemer, G. (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB Journal 14, 729739.Google Scholar
Florentin, A. & Arama, E. (2012) Caspase levels and execution efficiencies determine the apoptotic potential of the cell. Journal of Cell Biology 196, 513527.Google Scholar
Franzetti, E., Huang, Z.J., Shi, Y.X., Xie, K., Deng, X.J., Li, J.P., Li, Q.R., Yang, W.Y., Zeng, W.N., Casartelli, M., Deng, H.M., Cappellozza, S., Grimaldi, A., Xia, Q., Feng, Q., Cao, Y. & Tettamanti, G. (2012), Autophagy precedes apoptosis during the remodelling of silkworm larval midgut. Apoptosis 17, 305324.Google Scholar
Gabriel, B., Sureau, F., Casselyn, M., Teissié, J. & Petit, P.X. (2003) Retroactive pathway involving mitochondria in electroloaded cytochrome c-induced apoptosis: protective properties of Bcl-2 and Bcl-XL . Experimental Cell Research 289, 195210.Google Scholar
Gerardo, N.M., Altincicek, B., Anselme, C., Atamian, H., Barribeau, S.M., de Vos, M., Duncan, E.J., Evans, J.D., Gabaldón, T., Ghanim, M., Heddi, A., Kaloshian, I., Latorre, A., Moya, A., Nakabachi, A., Parker, B.J., Pérez-Brocal, V., Pignatelli, M., Rahbé, Y., Ramsey, J.S., Spragg, C.J., Tamames, J., Tamarit, D., Tamborindeguy, C., Vincent-Monegat, C. & Vilcinskas, A. (2010) Immunity and other defenses in pea aphids, Acyrthosiphon pisum . Genome Biology 11, R21. doi: 10.1186/gb-2010-11-2-r21.Google Scholar
Gordy, C. & He, Y-W. (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein and Cell 3, 1727.CrossRefGoogle ScholarPubMed
Guo, Y., Srinivasula, S.M., Druilhe, A., Fernandes-Alnemri, T. & Alnemri, E.S. (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. Journal of Biological Chemistry 277, 1343013437.CrossRefGoogle ScholarPubMed
He, C.C. & Klionsky, D.J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics 43, 6793.Google Scholar
Hou, Y.C.C., Hannigan, A.M. & Gorski, S.M. (2009) An executioner caspase regulates autophagy. Autophagy 5, 530533.CrossRefGoogle ScholarPubMed
Inoue, Y. & Klionsky, D.J. (2010) Regulation of macroautophagy in Saccharomyces cerevisiae . Seminars in Cell and Developmental Biology 21, 664670.Google Scholar
Jehn, B.M. & Osborne, B.A. (1997) Gene regulation associated with apoptosis. Critical Reviews in Eukaryotic Gene Expression 7, 179193.Google Scholar
Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., Ferri, K.F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y.Y., Mak, T.W., Zúñiga-Pflücker, J.C., Kroemer, G. & Penninger, J.M. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549554.Google Scholar
Khoa, D.B. & Takeda, M. (2012) Expression of autophagy 8 (Atg8) and its role in the midgut and other organs of the greater wax moth, Galleria mellonella, during metamorphic remodelling and under starvation. Insect Molecular Biology 21, 473487.Google Scholar
LeBlanc, P.M. & Saleh, M. (2009) Caspases in Inflammation and Immunity. eLS, Wiley Online Library.CrossRefGoogle Scholar
Li, Q., Deng, X., Yang, W., Huang, Z., Tettamanti, G., Cao, Y. & Feng, Q. (2010) Autophagy, apoptosis and ecdysis-related gene expression in the silk gland of the silkworm (Bombyx mori) during metamorphosis. Canadian Journal of Zoology 88, 11691178.Google Scholar
Liu, L., Tang, Q., Fu, C., Peng, J., Yang, H., Li, Y. & Hong, H. (2007) Influence of glucose starvation on the pathway of death in insect cell line Sl: apoptosis follows autophagy. Cytotechnology 54, 97105.Google Scholar
Liu, Y., Sheng, Z., Liu, H., Wen, D., He, Q., Wang, S., Shao, W., Jiang, R.J., An, S., Sun, Y., Bendena, W.G., Wang, J., Gilbert, L.I., Wilson, T.G., Song, Q. & Li, S. (2009) Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development 136, 20152025.CrossRefGoogle ScholarPubMed
Livak, K.J. & Schmittagen, T.D. (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔ CT method. Methods 25, 402408.Google Scholar
Lorenzo, H.K., Susin, S.A., Penninger, J. & Kroemer, G. (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death and Differentiation 6, 516524.Google Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the folin–phenol reagent. Journal of Biological Chemistry 193, 265275.Google Scholar
Martin, D.N. & Baehrecke, E.H. (2004) Caspases function in autophagic programmed cell death in Drosophila . Development 131, 275284.CrossRefGoogle ScholarPubMed
Minguez, L., Brule´, N., Sohm, B., Devin, S. & Giambe´rini, L. (2013) Involvement of apoptosis in host-parasite interactions in the zebra mussel. PLoS ONE 8, e65822. doi: 10.1371/journal.pone.0065822.CrossRefGoogle ScholarPubMed
Misch, D.W. (1965) Alteration in subcellular structure of metamorphosing insect intestinal cells. American Zoologist 5, 699705.Google Scholar
Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 10691075.CrossRefGoogle ScholarPubMed
Muller, F., Adori, C. & Sass, M. (2004) Autophagic and apoptotic features during programmed cell death in the fat body of the tobacco hornworm (Manduca sexta). European Journal of Cell Biology 83, 6778.Google Scholar
Nezis, I.P., Shravage, B.V., Sagona, A.P., Johansen, T., Baehrecke, E.H. & Stenmark, H. (2010) Autophagy as a trigger for cell death: autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila . Autophagy 6, 12141215.CrossRefGoogle ScholarPubMed
Palmer, C.A., Wittrock, D.D. & Christensen, B.M. (1986) Ultrastructure of Malpighian tubules of Aedes aegypti infected with Dirofilaria immitis . Journal of Invertebrate Pathology 48, 310317.CrossRefGoogle ScholarPubMed
Pinheiro, D.O., Silva, M.D. & Gregorio, E.A. (2010) Mitochondria in the midgut epithelial cells of sugarcane borer parasitized by Cotesia flavipes (Cameron, 1891). Brazilian Journal of Biology 70, 163169.Google Scholar
Pradeep, A.R., Anitha, J., Awasthi, A.K., Babu, M.A., Geetha, M.N., Arun, K.H., Chandrashekhar, S., Rao, G.C. & Vijayaprakash, N.B. (2012) Activation of autophagic programmed cell death and innate immune gene expression reveals immuno-competence of integumental epithelium in Bombyx mori infected by a dipteran parasitoid. Cell and Tissue Research 352, 371385. Epub 2012 Nov 18.CrossRefGoogle ScholarPubMed
Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia- Arencibia, M., Green-Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M., Luo, S., Massey, D.C., Menzies, F.M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F.H., Underwood, B.R., Winslow, A.R. & Rubinsztein, D.C. (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews 90, 13831435.CrossRefGoogle ScholarPubMed
Sakoh-Nakatogawa, M., Matoba, K., Asai, E., Kirisako, H., Ishii, J., Noda, N.N., Inagaki, F., Nakatogawa, H. & Ohsumi, Y. (2013) Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nature Structural and Molecular Biology 20, 433439.Google Scholar
Schaub, G.A. & Sehnitker, A. (1988) Influence of Blastocrithidia triatomae (Trypanosomatidae) on the reduviid bug Triatoma infestans: alterations in the Malpighian tubules. Parasitology Research 75, 8897.CrossRefGoogle ScholarPubMed
Schulthess, F.T., Katz, S., Ardestani, A., Kawahira, H., Georgia, S., Bosco, D., Bhushan, A. & Maedler, K. (2009) Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF) induces B-cell apoptosis and impairs B-cell mass. PLoS ONE 4, e4394. doi: 10.1371/journal.pone.000439.Google Scholar
Scott, R.C., Schuldiner, O. & Neufeld, T.P. (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Developmental Cell 7, 167178.Google Scholar
Simonsen, A., Cumming, R.C. & Finley, D. (2007) Linking lysosomal trafficking defects with changes in aging and stress response in Drosophila . Autophagy 3, 499501.CrossRefGoogle ScholarPubMed
Sinai, A.P., Payne, T.M., Carmen, J.C., Hardi, L., Watson, S.J. & Molestina, R.E. (2004) Mechanisms underlying the manipulation of host apoptotic pathways by Toxoplasma gondii . PCR 34, 381391.Google ScholarPubMed
Suganuma, I., Ushiyama, T., Yamada, H., Iwamoto, A., Kobayashi, M. & Ikeda, M. (2011) Cloning and characterization of a dronc homologue in the silkworm, Bombyx mori . Insect Biochemistry and Molecular Biology 41, 909921.Google Scholar
Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prévost, M.C., Alzari, P.M. & Kroemer, G. (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. Journal of Experimental Medicine 189, 381394.CrossRefGoogle ScholarPubMed
Susin, S.A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K.F., Irinopoulou, T., Prévost, M.C., Brothers, G., Mak, T.W., Penninger, J., Earnshaw, W.C. & Kroemer, G. (2000) Two distinct pathways leading to nuclear apoptosis. Journal of Experimental Medicine 192, 571579.CrossRefGoogle ScholarPubMed
Suzanne, M. & Steller, H. (2013) Shaping organisms with apoptosis. Cell Death and Differentiation 20, 669675.Google Scholar
Tian, L., Ma, L., Guo, E., Deng, X., Ma, S., Xia, Q., Cao, Y. & Li, S. (2013) 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 9, 11721187.CrossRefGoogle ScholarPubMed
Ubol, S., Tucker, P.C., Griffin, D.E. & Hardwick, J.M. (1994) Neurovirulent strains of alpha virus induce apoptosis inbcl-2-expressing cells: role of a single amino acid change in the E2 glycoprotein. Proceedings of National Academy of Sciences USA 91, 52025206.CrossRefGoogle ScholarPubMed
Van Loo, G., Demol, H., van Gurp, M., Hoorelbeke, B., Schotte, P., Beyaert, R., Zhivotovsky, B., Gevaert, K., Declercq, W., Vandekerckhove, J. & Vandenabeele, P. (2002) A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death and Differentiation 9, 301308.Google Scholar
Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T. & Simon, H.U. (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology 8, 11241132.Google Scholar
Zhang, X., Hu, Z.Y., Li, W.F., Li, Q.R., Deng, X.J., Yang, W.Y., Cao, Y. & Zhou, C.Z. (2009) Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori . BMC Molecular Biology 10, 50.Google Scholar
Zhang, J.Y., Pan, M.H., Sun, Z.Y., Huang, S.J., Yu, Z.S., Liu, D., Zhao, D.H. & Lu, C. (2010) The genomic underpinnings of apoptosis in the silkworm, Bombyx mori . BMC Genomics 11, 611.Google Scholar