Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T22:25:52.521Z Has data issue: false hasContentIssue false

Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach

Published online by Cambridge University Press:  07 February 2012

R. Moreno-Ripoll
Affiliation:
IRTA, Entomology, Ctra. de Cabrils, Km. 2, E-08348 Cabrils, Barcelona, Spain
R. Gabarra
Affiliation:
IRTA, Entomology, Ctra. de Cabrils, Km. 2, E-08348 Cabrils, Barcelona, Spain
W.O.C. Symondson
Affiliation:
Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
R.A. King
Affiliation:
Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
N. Agustí*
Affiliation:
IRTA, Entomology, Ctra. de Cabrils, Km. 2, E-08348 Cabrils, Barcelona, Spain
*
*Author for correspondence Fax: (34) 93 7533954 E-mail: nuria.agusti@irta.cat

Abstract

The whiteflies Bemisia tabaci Gennadius and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are two of the main pests in tomato crops. Their biological control in Mediterranean IPM systems is based on the predators Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis Reuter (Hemiptera: Miridae), as well as on the parasitoids Eretmocerus mundus (Mercet) and Encarsia pergandiella Howard (Hymenoptera: Aphelinidae). These natural enemies may interact with each other and their joint use could interfere with the biological control of those whitefly pests. Analysis of predator-prey interactions under field conditions is therefore essential in order to optimize whitefly control. Species-specific polymerase chain reaction (PCR)-primers were designed to detect DNA fragments of these whiteflies and parasitoids within both predator species in tomato greenhouses. We demonstrated that both predators feed on both whitefly species, as well as on both parasitoids under greenhouse conditions. Prey molecular detection was possible where prey abundance was very low or even where predation was not observed under a microscope. Whitefly DNA detection was positively correlated with adult whitefly abundance in the crop. However, a significant relationship was not observed between parasitoid DNA detection and the abundance of parasitoid pupae, even though the predation rate on parasitoids was high. This unidirectional intraguild predation (predators on parasitoids) could potentially reduce their combined impact on their joint prey/host. Prey molecular detection provided improved detection of prey consumption in greenhouse crops, as well as the possibility to identify which prey species were consumed by each predator species present in the greenhouse, offering a blueprint with wider applicability to other food webs.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustí, N. & Gabarra, R. (2009a) Puesta a punto de una cría masiva del depredador polífago Dicyphus tamaninii Wagner (Heteroptera: Miridae). Boletin Sanidad Vegetal: Plagas 35, 205218.Google Scholar
Agustí, N. & Gabarra, R. (2009b) Effect of adult age and insect density of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on progeny. Journal of Pest Science 82, 241246.Google Scholar
Agustí, N., Shayler, S., Harwood, J.D., Vaughan, I.P., Sunderland, K.D. & Symondson, W.O.C. (2003) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology 12, 34673475.Google Scholar
Agustí, N., Bourguet, D., Spataro, T., Delos, M., Eychenne, N., Folcher, L. & Arditi, R. (2005) Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers. Molecular Ecology 14, 32673274.CrossRefGoogle ScholarPubMed
Albajes, R. & Alomar, O. (1999) Current and potential use of polyphagous predators. pp. 265275in Albajes, R., Gullino, M.L., van Lenteren, J.C. & Elad, Y. (Eds) Integrated Pest and Disease Management in Greenhouse Crops. Dordrecht, Netherlands, Kluwer Academic Publishers.Google Scholar
Albajes, R., Sarasúa, M.J., Avilla, J., Arnó, J. & Gabarra, R. (2003) Integrated pest management in the mediterranean region: the case of Catalonia, Spain. pp. 341355in Maredia, K.M., Dakouo, D. & Mota-Sanchez, D. (Eds) Integrated Pest Management in the Global Arena. Wallingford, UK, CABI Publishing.Google Scholar
Arnó, J., Matas, M., Martí, M., Ariño, J., Roig, J. & Gabarra, R. (2005) Coexistence between Trialeurodes vaporariorum and Bemisia tabaci and impact of natural enemies in tomato crops under Mediterranean conditions. IOBC/WPRS Bulletin 28, 14.Google Scholar
Arnó, J., Albajes, R. & Gabarra, R. (2006) Within-plant distribution and sampling of single and mixed infestations of Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in winter tomato crops. Journal of Economic Entomology 99, 331340.CrossRefGoogle ScholarPubMed
Arnó, J., Sorribas, R., Prat, M., Matas, M., Pozo, C., Rodríguez, D., Garreta, A., Gómez, A. & Gabarra, R. (2009) Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bulletin 49, 203208.Google Scholar
Arnó, J., Castañé, C., Riudavets, J. & Gabarra, R. (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bulletin of Entomological Research 100, 105115.CrossRefGoogle ScholarPubMed
Avilla, J., Albajes, R., Alomar, O., Castañé, C. & Gabarra, R. (2004) Biological control of whiteflies in protected vegetable crop. pp. 171184in Parrella, M.P. & Heinz, K.M. (Eds) Biological Control of Arthropods Pests in Protected Culture. Batavia, IL, USA, Ball Publishing.Google Scholar
Barnadas, I., Gabarra, R. & Albajes, R. (1998) Predatory capacity of two mirid bugs preying on Bemisia tabaci. Entomologia Experimentalis et Applicata 86, 215219.Google Scholar
Calvo, F.J., Bolckmans, K. & Belda, J.E. (2009) Development of a biological control-based Integrated Pest Management metod for Bemisia tabaco for protected sweet pepper crops. Entomologia Experimentalis et Applicata 133, 918.CrossRefGoogle Scholar
Castañé, C., Alomar, O., Goula, M. & Gabarra, R. (2004) Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control 30, 591597.CrossRefGoogle Scholar
Chacón, J.M., Landis, D.A. & Heimpel, G.E. (2008) Potential for biotic interference of a classical biological control agent of the soybean aphid. Biological Control 46, 216225.Google Scholar
Gabarra, R. & Besri, M. (1999) Tomatoes. pp. 420434in Albajes, R., Gullino, M.L., van Lenteren, J.C. & Elad, Y. (Eds) Integrated Pest and Disease Management in Greenhouse Crops. Dordrecht, Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Gabarra, R., Arnó, J., Alomar, O. & Albajes, R. (1999) Naturally occurring populations of Encarsia pergandiella (Hymenoptera: Aphelinidae) in tomato greenhouses. IOBC/WPRS Bulletin 22, 8588.Google Scholar
Gabarra, R., Zapata, R., Castañé, C., Riudavets, J. & Arnó, J. (2006) Releases of Eretmocerus mundus and Macrolophus caliginosus for controling Bemisia tabaci on spring and autumn greenhouse tomato crops. IOBC/WPRS Bulletin 29, 7176.Google Scholar
Gariepy, T.D., Kuhlmann, U., Gillott, C. & Erlandson, M. (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131, 225240.CrossRefGoogle Scholar
Harper, G.L., King, R.A., Dodd, C.S., Harwood, J.D., Glen, D.M., Bruford, M.W. & Symondson, W.O.C. (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Molecular Ecology 14, 819827.CrossRefGoogle ScholarPubMed
Harwood, J.D., Desneux, N., Yoo, H.Y.S., Rowley, D.L., Greenstone, M.H., Obrycki, J.J. & O'Neil, R.J. (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Molecular Ecology 16, 43904400.CrossRefGoogle ScholarPubMed
Hoelmer, K.A., Osborne, L.S. & Yokomi, R.K. (1994) Interactions of the whitefly predator Delphastus pusillus (Coleoptera: Coccinellidae) with parasitized sweetpotato whitefly (Homoptera: Aleyrodidae). Environmental Entomology 23, 136139.Google Scholar
Jarman, S.N. (2004) Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20, 16441645.Google Scholar
Juen, A. & Traugott, M. (2007) Revealing species-specific trophic links in soil food webs: molecular identification of scarab predators. Molecular Ecology 16, 15451557.CrossRefGoogle ScholarPubMed
King, R.A., Read, D.S., Traugott, M. & Symondson, W.O.C. (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17, 947963.CrossRefGoogle ScholarPubMed
Kuusk, A.-K., & Agustí, N. (2008) Group-specific primers for DNA-based detection of springtails (Hexapoda: Collembola) within predator gut contents. Molecular Ecology Resources 8, 678681.Google Scholar
Kuusk, A.-K., Cassel-Lundhagen, A., Kvarnheden, A. & Ekbom, B. (2008) Tracking aphid predation by lycosid spiders in spring-sown cereals using PCR-based gut-content analysis. Basic and Applied Ecology 9, 718725.CrossRefGoogle Scholar
Liu, T.X. & Stansly, P.A. (1996) Oviposition, development, and survivorship of Encarsia pergandiella (Hymenoptera: Aphelinidae) in four instars of Bemisia argentifolii (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 89, 96102.CrossRefGoogle Scholar
Malo, S. (2009) Biological control of Bemisia tabaci (Homoptera: Aleyrodidae): Eretmocerus mundus (Hymenoptera: Aphelinidae), Macrolophus pygmaeus (Heteroptera: Miridae) and its interaction [Control biològic de Bemisia tabaci (Homoptera: Aleyrodidae): Eretmocerus mundus (Hymenoptera: Aphelinidae), Macrolophus pygmaeus (Heteroptera: Miridae) i la seva interacció]. PhD thesis, University of Lleida, Spain (in Catalan).Google Scholar
Martinez-Cascales, J.I., Cenis, J.L., Cassis, G. & Sanchez, J.A. (2006) Species identity of Macrolophus melanotoma (Costa 1853) and Macrolophus pygmaeus (Rambur 1839) (Insecta: Heteroptera: Miridae) based on morphological and molecular data and bionomic implications. Insect Systematics & Evolution 37, 385404.Google Scholar
Montserrat, M., Albajes, R. & Castañé, C. (2000a) Comparative behaviour of three predators used in biological control in greenhouse crops. IOBC/WPRS Bulletin 23, 267272.Google Scholar
Montserrat, M., Albajes, R. & Castañé, C. (2000b) Functional response of four heteropteran predators preying on greenhouse whitefly (Homoptera: Aleyrodidae) and western flower thrips (Thysanoptera: Thripidae). Environmental Entomology 29, 10751082.Google Scholar
Moya, A., Guirao, P., Cifuentes, D., Beitia, F. & Cenis, J.L. (2001) Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Molecular Ecology 10, 891897.CrossRefGoogle ScholarPubMed
Rosenheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J. & Jaffee, B.A. (1995) Intraguild predation among biological-control agents: theory and evidence. Biological Control 5, 303335.CrossRefGoogle Scholar
SAS Institute Inc. (2001) The SAS System for Windows 8.02. SAS Institute, Cary, NC, USA.Google Scholar
Sint, D., Raso, L., Kaufmann, R. & Traugott, M. (2011) Optimizing methods for PCR-based analysis of predation. Molecular Ecology Resources 11, 795801.Google Scholar
Symondson, W.O.C. (2002) Molecular identification of prey in predator diets. Molecular Ecology 11, 627641.Google Scholar
Traugott, M. & Symondson, W.O.C. (2008) Molecular analysis of predation on parasitized hosts. Bulletin of Entomological Research 98, 223231.Google Scholar
Traugott, M., Bell, J.R., Raso, L., Sint, D. & Symondson, W.O.C. (2011) Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bulletin of Entomological Research, doi: 10.1017/S0007485311000551.Google Scholar
van Baalen, M., Krivan, V., van Rijn, P.C.J. & Sabelis, M.W. (2001) Alternative food, switching predators, and the persistence of predator-prey systems. American Naturalist 157, 512524.CrossRefGoogle ScholarPubMed
Zhang, G.F., , Z.C. & Wan, F.H. (2007) Detection of Bemisia tabaci remains in predator guts using a sequence-characterized amplified region marker. Entomologia Experimentalis et Applicata 123, 8190.Google Scholar