Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T22:16:56.292Z Has data issue: false hasContentIssue false

Ground beetle assemblages across a habitat gradient in a stream watershed during 16 years of observation

Published online by Cambridge University Press:  24 May 2016

J. Skłodowski*
Affiliation:
Warsaw University of Life Sciences, Department of Forest Protection and Ecology, Nowoursynowska 159, 02-776 Warszawa, Poland
*
Author for correspondence Tel: + (48) 22 59 38 164 Fax: + (48) 22 59 38 154 E-mail: sklodowski@wl.sggw.pl

Abstract

Most studies on riverine ground beetle assemblages last 1–2 years, and studies on carabids from lowland stream ecosystems are rare. In 1999, a 16-year study was launched to gain insight into the structure and diversity of carabid assemblages in a cross-section of four habitats located beside a 5 m wide stream: Meadow (wet meadow), Clumps (meadow scattered with birch and willow clumps farther from the river), Birch (birch stand), and Pine (pine stand located the farthest from the stream). The total number of 14, 216 individuals representing 118 carabid species were collected. Eleven functional carabid groups have been analysed. Principal response curve analysis showed significant differences existing during the whole study period among carabid assemblages from the four habitats. Generalised Linear Mixed Models analysis revealed a dependence of Chao2 estimator performance on temperature and ground water level, whereas life traits of carabids depended solely on the latter factor, affecting species composition (i.e., proportions of autumn and spring breeders, large and small zoophages, hemizoophages, forest, generalists and open area species, wingless species, hygrophilous, mesophilous and xerophilous species). The lower the ground water level, the higher was the proportion of late-successional species. Both Chao2 value and the proportion of late-successional species were growing with the increasing distance from the stream, peaking in the Pine habitat. Early-successional fauna dominated in streamside assemblages. IndVal analysis identified 1–9 characteristic species for each habitat type, mostly non-recurrent during the study period. Thus, species composition of riverine carabid assemblages should be studied for longer periods than 1–2 years to avoid accidental observations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, J. & Hanssen, O. (2005) Riparian beetles, a unique, but vulnerable element in the fauna of Fennoscandia. Biodiversity and Conservation 14, 34973524.CrossRefGoogle Scholar
Bonn, A. & Kleinwächter, M. (1999) Microhabitat distribution of spider and ground beetle assemblages (Araneae, Carabidae) on frequently inundated river banks of the River Elbe. Zeitschrift für Ökolgie und Naturschutz 8, 109123.Google Scholar
Bonn, A., Hagn, K. & Wohlgemuth-Von Reiche, D. (2002) The significance of flood regimes for carabid beetle and spider communities in riparian habitats – a comparison of three major rivers in Germany. River Research and Applications 18, 4364.CrossRefGoogle Scholar
Boscaini, A., Franceschini, A. & Maiolini, B. (2000) River ecotones: carabid beetles as a tool for quality assessment. Hydrobiologia 422/423, 173181.CrossRefGoogle Scholar
Bunn, S.E. & Arthington, A.H. (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30, 492507.CrossRefGoogle ScholarPubMed
Colwell, R.K. (2013) EsimatesS: Statistical estimation of species richness and shared species from samples. Version 9.Google Scholar
Desender, K. (1989) Ecomorphological adaptations of riparian carabid beetles. pp. 309314 in Wouters, K. & Baert, L. (Eds) Verhandelingen van het Symposium ‘Invertebraten van België’. Brussels, Belgium, Koninklijk Belgisch Instituut voor Natuurwetenschappen.Google Scholar
Dufrêne, M. & Legendre, P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345366.Google Scholar
Elek, Z., Dauffy-Richard, E. & Gosselin, F. (2010) Carabid species responses to hybrid poplar plantations in floodplains in France. Forest Ecology and Management 260, 14461455.CrossRefGoogle Scholar
Eyre, M.D., Lott, D.A. & Luff, M.L. (2001) The rover beetles (Coleoptera, Staphylinidae) of expose riverine sediments in Scotland and northern England: habitat classification and conservation aspects. Journal of Insect Conservation 5, 173186.CrossRefGoogle Scholar
Gerisch, M. (2011) Habitat disturbance and hydrological parameters determine the body size and reproductive strategy of alluvial ground beetles. ZooKeys 100, 353370.CrossRefGoogle Scholar
Gerken, B., Drfer, K., Buschmann, M., Kamps-Schwob, S., Berthelmann, J. & Gertenbach, D. (1991) Composition and disturbation of Carabid communities along rivers and ponds in the Region of Upper Weser (NW/NDS/FRG) with respect to protection and management of a floodplain ecosystem. Regulated Rivers: Research and Management 16, 313320.CrossRefGoogle Scholar
Greenwood, M.T., Bickerton, M.A. & Petts, G.E. (1995) Floodplain Coleoptera distributions: river Trent, UK. Archives of Hydrobiology Supplement 101, 427437.Google Scholar
Hammer, O., Harperm, D.A.T. & Ryan, P.D. (2001) Paleontological Statistics software package for education and data analysis. Paleontologia Electronica 4, 9.Google Scholar
Hůrka, K. (1996) Carabidae of the Czech and Slovak Republics. 565 pp. Zlín, Kabourek.Google Scholar
Jähnig, S.C., Brunzel, S., Gacek, S., Lorens, A.W. & Bering, D. (2009) Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. Journal of Applied Ecology 46, 406416.CrossRefGoogle Scholar
Januschke, K., Jähnig, S.C., Lorenz, A.W. & Bering, D. (2014) Mountain river restoration measures and their success(ion): effects on river morphology, local species pool, and functional composition of three organism groups. Ecological Indicators 38, 243255.CrossRefGoogle Scholar
Kleinwächter, M., & Rickfelder, T. (2007) Habitat models for a riparian carabid beetle: their validity and applicability in the evaluation of river bank management. Biodiversity and Conservation 16, 30673081.CrossRefGoogle Scholar
Kłonowska-Olejnik, M. & Skalski, T. (2014) The effect of environmental factors on the mayfly communities of headwater streams in the Pieniny Mountains (West Carpathians). Biologia 69, 498507.CrossRefGoogle Scholar
Koivula, M. (2011) Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100, 287317.CrossRefGoogle Scholar
Koivula, M., Punttila, P., Haila, Y. & Niemelä, J. (1999) Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22, 424435.CrossRefGoogle Scholar
Kosewska, A., Skalaski, T. & Nietupski, M. (2014) Effect of conventional and non-inversion tillage systems on the abundance and some life history traits of carabid beetles (Coleoptera: Carabidae) in winter triticale fields. European Journal of Entomology 111, 669676.CrossRefGoogle Scholar
Lambeets, K., Vandegehuchte, M.L., Maelfait, J-P. & Bonte, D. (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. Journal of Animal Ecology 77, 11621174.CrossRefGoogle ScholarPubMed
Lambeets, K., Vandegehuchte, M.L., Maelfait, J-P. & Bonte, D. (2009) Integrating environmental conditions and functional lifehistory traits for riparian arthropod conservation planning. Biological Conservation 142, 625637.CrossRefGoogle Scholar
Lenzi, M.A. & Comiti, F. (2003) Local scouring and morphological adjustments in steep channels with check-dam sequences. Geomorphology 55, 97109.CrossRefGoogle Scholar
Lövei, G. & Sunderland, K.D. (1996) The ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 41, 241256.CrossRefGoogle ScholarPubMed
Magura, T., Ködöböcz, V. & Tóthmérész, B. (2001) Effects of habitat fragmentation on carabids in forest patches. Journal of Biogeography 28, 129138.CrossRefGoogle Scholar
Magura, T., Bogyó, D., Mizser, S., Nagy, D.D. & Tóthmérész, B. (2015) Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. Forest Ecology and Management 339, 117126.CrossRefGoogle Scholar
Niemelä, J., Langor, D. & Spence, J.R. (1993) Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in Western Canada. Conservation Biology 7, 551561.CrossRefGoogle Scholar
Pizzolotto, R. (2009) Characterization of different habitats on the basis of the species traits and eco-field approach. Acta Oecologia 35, 142148.CrossRefGoogle Scholar
Pizzolotto, R., Cairns, W. & Barbante, C. (2013) Pilot research on testing the reliability of studies on carabid heavy metals contamination. Baltic Journal of Coleopterology 13, 113.Google Scholar
Radecki-Pawlik, A. & Skalski, T. (2008 a) A new concept of bankfull determination using invertebrate communities – the Ochotnica stream, Polish Carpathians. Electronic Journal of Polish Agricultural Universities 11, 122.Google Scholar
Radecki-Pawlik, A. & Skalski, T. (2008 b) Bankfull discharge determination using the new Invertebrate Bankfull Assessment Method. Journal of Water and Land Development Journal of Water Land Development 12, 145153.CrossRefGoogle Scholar
R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.1.2 (2014-10-31) ‘Pumpkin Helmet’. Available online at http://www.R-project.org/.Google Scholar
Ribera, I., Doledec, S., Downie, I.S. & Foster, G.N. (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 11121129.CrossRefGoogle Scholar
Rothenbücher, J. & Schaefer, M. (2006) Submersion tolerance in floodplain arthropod communities. Basic and Applied Ecology 7, 398408.CrossRefGoogle Scholar
Saska, P. & Honěk, A. (2003) Temperature and development of central European species of Amara (Coleoptera: Carabidae). European Journal of Entomology 100, 509515.CrossRefGoogle Scholar
Schrimel, J., Blindow, I. & Buchholz, S. (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic and Applied Ecology 13, 606614.CrossRefGoogle Scholar
Schwerk, A. & Abs, M. (1995) Bergehalden als Lebensraum für Laufkäfer (Coleoptera, Carabidae). Verhandlungen der Geselalschaft für Ökologie 24, 581583.Google Scholar
Schwerk, A. & Szyszko, J. (2007) Successional patterns of carabid fauna (Coleoptera: Carabidae) in planted and natural regenerated pine forests growing on old arable land. Baltic Journal of Coleopterology 7, 916.Google Scholar
Sienkiewicz, P. & Żmichorski, P. (2013) The effect of disturbance caused by rivers flooding on ground beetles (Coleoptera: Carabidae). European Journal of Entomology 109, 535541.CrossRefGoogle Scholar
Skalski, T., Kędzior, R. & Radecki-Pawlik, A. (2012) Riverine ground beetles as indicators of inundation frequency of mountain stream: a case study of the Ochotnica Stream, Southern Poland. Baltic Journal of Coleopteroogy 12, 117126.Google Scholar
Skłodowski, J. (2014) Consequence of the transformation of a primeval forest into a managed forest for carabid beetles (Coleoptera: Carabidae) – a case study from Białowieża (Poland). European Journal of Entomology 111, 639648.CrossRefGoogle Scholar
Skłodowski, J. & Garbalińska, P. (2011) Groudnd betele (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcz Piska Forests: six-year responsem to a tornado impact. Zookeys 100, 371392.CrossRefGoogle Scholar
StatSoft, Inc. (2011) STATISTICA (data analysis software system), version 10. Available online at http://www.statsoft.com.Google Scholar
Szyszko, J. (1983) State of Carabidae (Col.) Fauna in Fresh Pine Forest and Tentative Valorization of this Environment. Warsaw, Agricultural University Press.Google Scholar
Ter Braak, C.J.F. & Šmilauer, P. (2003) Multivariate Analysis of Ecological Data Using CANOCO. 269 pp. New York, New York, Cambridge University Press.Google Scholar
Ter Braak, C.J.F. & Šmilauer, P. (2012) Canoco Reference Manual and User's Guide: Software for Ordination, Version 5.0. 496 pp. Ithaca, USA, Microcomputer Power.Google Scholar
Thiele, H.-U. (1977) Carabid Beetles in their Environments: a Study on Habitat Selection by Adaptations in Physiology and Behaviour. 369 pp. Berlin, Spring-Verlag.CrossRefGoogle Scholar
Turin, H. (2000) De Nedrelandse loopkevers. Verspreiding en oecologie (Coleoptera: Carabidae). Nationaal Natuurhistirisch Museum Naturalis. – KNNV Uitgeverij. 662 ss.Google Scholar
Van den Brink, P.J. & Ter Braak, C.J.F. (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environmental Toxicology and Chemistry 18, 138148.Google Scholar
Van den Brink, P.J., den Besten, P.J., bij de Vaate, A. & Ter Braak, C.J.F. (2009) Principal response curves technique for analysis of multivariate biomonitoring time series. Environmental Monitoring and Assessment 152, 271281.CrossRefGoogle ScholarPubMed
Weigmann, G. & Wohlgemutfh-von-Reiche, D. (1999) Vergleichende Betrachtungen zu den Uberlebenaatrategien von Bodentieren im Uberflutungsbereich von Tieflandauen. pp. 229240 in Dohle, W., Bornkamm, R. & Weigmann, G. (Eds) Das Untere Odertal: Auswirkungen der periodischen Uberschwemmungen auf Biozonosen und Arten. Stutgart, E. Schweizerbart'sche Verlagbuchhandlung.Google Scholar
Zamora-Munoz, C. & Sanchez-Ortega, A., Alba-Tercedor, J. (1993) Physicochemical factors that determine the distribution of mayflies and stoneflies in a high-mountain stream in Southern Europe (Sierra Nevada, Southern Spain). Aquatic Insects 15, 1120.CrossRefGoogle Scholar
Supplementary material: File

Skłodowski supplementary material

Appendix

Download Skłodowski supplementary material(File)
File 154.1 KB