Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:59:36.796Z Has data issue: false hasContentIssue false

Whole-rat protein content estimation: applicability of the N × 6·25 factor

Published online by Cambridge University Press:  09 March 2007

Immaculada Rafecas
Affiliation:
Servei de Radioisbtops, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
Montserrat Esteve
Affiliation:
Departarnent de Bioquimica i Fisiologia, Facultat de Biologia Universitat de Barcelona, Barcelona, Spain
José-Antonio Fernández-López
Affiliation:
Departarnent de Bioquimica i Fisiologia, Facultat de Biologia Universitat de Barcelona, Barcelona, Spain
Xavier Remesar
Affiliation:
Departarnent de Bioquimica i Fisiologia, Facultat de Biologia Universitat de Barcelona, Barcelona, Spain
Marià Alemany
Affiliation:
Departarnent de Bioquimica i Fisiologia, Facultat de Biologia Universitat de Barcelona, Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The amino acid composition of the protein from three strains of rat (Wistar, Zucker lean and Zucker obese), subjected to reference and high-fat diets has been used to determine the mean empirical formula, molecular weight and N content of whole-rat protein. The combined whole protein of the rat was uniform for the six experimental groups, containing an estimate of 17.3% N and a mean aminoacyl residue molecular weight of 103.7. This suggests that the appropriate protein factor for the calculation of rat protein from its N content should be 5.77 instead of the classical 6.25. In addition, an estimate of the size of the non-protein N mass in the whole rat gave a figure in the range of 5.5 % of all N. The combination of the two calculations gives a protein factor of 5.5 for the conversion of total N into rat protein.

Type
Estimation of the protein content of the carcass
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Allen, G. (1989). Sequencing of proteins and peptides. In Laboratory Techniques in Biochemistry and Molecular Biology, vol. 9, pp. 4042 [Burdan, R. H. & van Knippenberg, P. W., editors]. Amsterdam: Elsevier.Google Scholar
Arola, L., Herrera, E. & Alemany, M. (1977). A new method for the deproteinization of small samples of blood plasma for amino acid determination. Analytical Biochemistry 82, 236239.CrossRefGoogle ScholarPubMed
Arola, L., Herrera, E. & Alemany, M. (1979). A method for the estimation of striated muscle mass in small laboratory animals. Revista Espanola de Fisiofogia 35, 215218.Google ScholarPubMed
Ball, E. W., Meynell, M. J., Beale, D., Kynoch, P., Lehman, H. & Stretton, A. O. W. (1966). Haemoglobin A12: α2δ2 16 glycine arginine. Nature 209, 12171218.CrossRefGoogle Scholar
Best, C. H. & Taylor, N. B. (1964). The Physiological Basis of Medical Practice, 7th ed., pp. 772793. Baltimore: Williams & Wilkins.Google Scholar
Bodwell, C. E., Hepner, P. A., Brooks, B. & Hahan, S. (1971). Comparative studies ofmyosins isolated from beef, pork and rabbit muscles. International Journal of Biochemistry 2, 682689.CrossRefGoogle Scholar
Carsten, M. E. & Katz, A. M. (1964). Actin: a comparative study. Biochimica et Biophysica Acta 90, 534541.CrossRefGoogle ScholarPubMed
Chibnall, A. C., Mangan, J. L. & Rees, M. W. (1958). Studies on the amide and C terminal residues in proteins.2. The ammonia nitrogen and amide nitrogen of various native protein preparations. Biochemical Journal 68, 111114.CrossRefGoogle Scholar
Diem, K. (1965). Scientific Table. Documenta Geigy, 6th ed., p. 550 [Geigy, J. R., editor]. Basel: Geigy.Google Scholar
Elleman, T. C. & Dopheide, T. A. (1972). The sequence of SCMK-B2B, a high sulphur protein from wool keratin. Journal of Biological Chemistry 241, 39003909.CrossRefGoogle Scholar
Esteve, M., Rafecas, I., Remesar, X. & Alemany, M. (1992). Nitrogen balance of lean and obese Zucker rats subjected to a cafeteria diet. International Journal of Obesity 16, 237244.Google ScholarPubMed
Food and Agriculture Organization/World Health Organization/United Nations University (1985). Energy and protein requirements. World Health Organization Technical Report Series, no. 724. Geneva: FAO/WHO/UNU.Google Scholar
Guyton, A. C. (1976). Textbook of Medical Physiology, 5th ed., pp. 543556. Philadelphia: Saunders.Google Scholar
Heinrikson, R. L. & Meredith, S. C. (1984). Amino acid analysis by reverse phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Analytical Biochemistry 136, 6574.CrossRefGoogle ScholarPubMed
Herd, P. A., Hammond, R. P. & Homolsky, M. W. (1973). Sodium pump activity during norepinephrine-stimulated respiration in brown adipocytes. American Journal of Physiology 224, 13001304.CrossRefGoogle ScholarPubMed
Hiller, A., Plazin, J. & Van Slyke, D. D. (1948). A study of conditions for Kjeldahl determination of nitrogen in proteins. Journal of Biological Chemistry 176, 14011420.CrossRefGoogle ScholarPubMed
Hobbs, J. T. (1967). Total blood volume - its meaurement and significance. Medical Monographs. Amersham: The Radiochemical Centre.Google Scholar
Kakiuchi, K. & Kobayashi, Y. (1971). Sedimentation analysis of soluble collagen and its subunits of chicken leg tendon. Journal of Biochemistry (Tokyo) 69, 4352.CrossRefGoogle Scholar
Kasper, C. B. (1970). Fragmentation of proteins and separation of peptide mixtures. In Protein Sequence Determination, pp. 137184. [ Needleman, S. B., editor]. New York: Springer-Verlag.CrossRefGoogle Scholar
King, K. S. & Frieden, C. (1970). The purification and physical properties of glutamate dehydrogenase from rat liver. Journal of Biological Chemistry 245, 43914396.CrossRefGoogle ScholarPubMed
Kleiner, D. (1981). The transport of NH3, and NH4: across biological membranes. Biochimica et Biophysica Acta 639, 4152.CrossRefGoogle ScholarPubMed
Kun, E. & Kearney, E. B. (1974). Ammonia. In Methods of Enzymatic Analysis, 2nd ed., vol. 4, pp. 18021806 [Bergmeyer, H. U., editor]. New York: Academic Press.CrossRefGoogle Scholar
Kurahashi, M. & Kuroshima, A. (1978). Creatine metabolism in skeletal muscle of cold-acclimated rats. Journal of Applied Physiology 44, 1216.CrossRefGoogle ScholarPubMed
Lin, C. P. & Huang, P.-C. (1982). Actual nitrogen deposition in mature adult rats fed moderate to high protein diets. Journal of Nutrition 112, 10671074.CrossRefGoogle ScholarPubMed
Lloyd, L. E., McDonald, B. E. & Crampton, E. W. (1978). Fundamentals of Nutrition, 2nd ed. San Francisco: Freeman.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
McKee, P. A., Rogers, L. A., Marler, E. & Hill, R. L. (1966). Subunit polypeptides of human fibrinogen. Archives of Biochemistry and Biophysics 116, 271279.CrossRefGoogle ScholarPubMed
Munro, H. N. (1970). Free amino acid pools and their role in regulation. In Mammalian Protein Metabolism, vol.4, pp. 299386 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Munro, H. N. (1976). Regulation of body protein metabolism in relation to diet. Proceedings of the Nutrition Society 35, 297308.CrossRefGoogle ScholarPubMed
Nedergaard, J. & Lindberg, O. (1982). The brown fat cell. International Reviews on Cytology 74, 187286.CrossRefGoogle ScholarPubMed
Oddoye, E. A. & Margen, S. (1979). Nitrogen balance studies in humans: long term effect of high nitrogen intake on nitrogen accretion. Journal of Nutrition 109, 363377.CrossRefGoogle ScholarPubMed
Passmore, R. & Eastwood, M. A. (1986). Human Nutrition and Dietetics, 8th ed., pp. 1617. Edinburgh: Churchill-Livingstone.Google Scholar
Peterson, G. L. (1979). Review of the Folin phenol protein quantitation of Lowry, Rosebrough, Farr and Randall. Analytical Biochemistry 100, 201220.CrossRefGoogle ScholarPubMed
Prasad, A. S., DuMouchelle, E., Koninch, D. & Oberleas, D. (1972). A simple fluorometric method for the determination of RNA and DNA in tissues. Journal of Laboratory and Clinical Medicine 80, 598602.Google ScholarPubMed
Prats, E., Monfar, M., Castelli, J., Iglesias, R. & Alemany, M. (1989). Energetic intake of rats fed a cafeteria diet. Physiology and Behaviour 45, 263272.CrossRefGoogle Scholar
Rafecas, I., Esteve, M., Fernindez-Lopez, J. A., Remesar, X. & Alemany, M. (1992). Dietary fatty acid management by young Zucker rats fed a cafeteria diet. International Journal of Obesity 16, 775787.Google Scholar
Reeck, G. R. & Fisher, L. (1973). A statistical analysis of the amino acid compositions of proteins. International Journal of Peptide and Protein Research 5, 109117.CrossRefGoogle Scholar
Singh, A. K. & Banister, E. W. (1983). Tissue ammonia and amino acids in rats at various oxygen pressures. Journal of Applied Physiology 54, 438444.CrossRefGoogle ScholarPubMed
Spahr, P. F. & Edsall, J. T. (1964). Amino acid composition of human and bovine serum mercaptalbumin. Journal of Biological Chemistry 239, 850854.CrossRefGoogle Scholar
Start, C. & Newsholme, E. A. (1968). The effects of starvation and alloxan-diabetes on the contents of citrate and other metabolic intermediates in rat liver. Biochemical Journal 107, 411415.CrossRefGoogle ScholarPubMed
Whistler, R. L. & Daniel, J. R. (1985). Carbohydrates. In Food Chemistry, pp. 69137 [Fennena, O. R., editor]. New York: Marcel Dekker.Google Scholar
Zamora, F., Arola, L. & Alemany, M. (1988). Some pitfalls and considerations on plasma ammonium estimation. Journal of Biochemical and Biophysical Methods 16, 293300.CrossRefGoogle Scholar