Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:49:21.985Z Has data issue: false hasContentIssue false

Supplementation with wheat selenium induces a dose-dependent response in serum and urine of a Se-replete population

Published online by Cambridge University Press:  09 March 2007

Helle M. Meltzer
Affiliation:
University of Oslo, Institute for Nutrition Research, School of Medicine, PO Box 1046 Blindern, 0316 Oslo 3, Norway
Gunnar Norheim
Affiliation:
Department of Pharmacology and Toxicology, Norwegian College of Veterinary Medicine / National Veterinary Institute, PO Box 8146 Dep, N-0033 Oslo 1, Norway
Elin BjØRge LØken
Affiliation:
University of Oslo, Institute for Nutrition Research, School of Medicine, PO Box 1046 Blindern, 0316 Oslo 3, Norway
Halvor Holm
Affiliation:
University of Oslo, Institute for Nutrition Research, School of Medicine, PO Box 1046 Blindern, 0316 Oslo 3, Norway
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In spite of a rather modest dietary intake of selenium (80 μg/10 MJ), Norwegian serum Se levels are among the highest in Europe. As part of an ongoing study of Se bioavailability, effects of different doses of wheat Se were investigated in eighteen healthy, Norwegian women. The participants were given Se-rich bread providing 100, 200 and 300 μg Se daily for 6 weeks. About 50% of the Se intake was excreted in the urine by week 6, compared with 67% before the intervention started. Serum Se increased by 20, 37 and 53 μg/I respectively, in the three groups (P < 0.001). The blood response and renal clearance results compare well with data obtained from less Se-replete populations, and support the hypothesis that selenomethionine from the diet is incorporated into a non-specific amino acid pool. Our study indicates that the intake of wheat Se is the main determinant of blood Se levels in Norway.

Type
Supplementation with Selenium
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Aaseth, J., Alexander, J., Thomassen, Y. & Norheim, G. (1980). Selenium, copper and zinc levels in human liver and serum in Norway. Proceedings of Mineral Elements 1980. A Nordic Symposium on Soil–Plant–Animal–Man Interrelationships and Implications to Human Health, part I, pp. 147153. Helsinki.Google Scholar
Abdulla, M. (1986). Inorganic chemical elements in prepared meals in Sweden. PhD Thesis, Department of Clinical Chemistry, University of Lund, Sweden.Google Scholar
Åkesson, B. & Øckerman, P. A. (1985). Selenium status in vegans and lactovegetarians. British Journal of Nutrition 53, 199205.Google Scholar
Alexander, A. R., Whanger, P. D. & Miller, L. T. (1983). Bioavailability to rats of selenium in various tuna and wheat products. Journal of Nutrition 113, 196204.CrossRefGoogle ScholarPubMed
Aukrust, A., Alertsen, A. R. & Skaug, O. E. (1983). Selenmangel, antakelig ikke noe problem her i landet. (Selenium deficiency: probably no problem in this country.) Tidsskrift for Den Norske Lægeforening 11, 940.Google Scholar
Blaker, B., Solvoll, K. & Lund-Larsen, K. (1988). Dietary data from the municipality of Vestre Toten. Results from a 24 h recall of men and women 30–59 years old. Section of Dietary Research, University of Oslo, Report no. 6. Oslo: The National Association for Nutrition and Health.Google Scholar
Blekastad, V., Jonsen, J., Steinnes, E. & Helgeland, K. (1984). Concentrations of trace elements in human blood serum from different places in Norway determined by neutron activation analysis. Acta Medica Scandinavica 216, 2529.CrossRefGoogle ScholarPubMed
Brätter, P., Negretti, V. E., Röstick, U., Jaffè, W. G., Hernan Mendez, C. & GuillermoTovar, E. Tovar, E. (1984). Effects of selenium intake in man at high dietary levels of seleniferous areas of Venezuela. In Trace Element – Analytical Chemistry in Medicine and Biology, Vol. 3, pp. 2945 [Brätter, P. and Schramel, P., editors]. Berlin and New York: Walter de Gruyter.Google Scholar
Burk, R. F. (1986). Selenium and cancer: Meaning of serum selenium levels. Journal of Nutrition 116, 15841586.Google Scholar
Douglass, J. S., Morris, V. C., Soares, J. H. & Levander, O. A. (1981). Nutritional availability to rats of selenium in tuna, beef kidney, and wheat. Journal of Nutrition 111, 21802187.CrossRefGoogle ScholarPubMed
Janghorbani, M., Martin, R. F., Kasper, L. J., Sun, X. F. & Young, V. R. (1990). The selenite-exchangeable metabolic pool in humans: a new concept for the assessment of selenium status. American Journal of Clinical Nutrition 51, 670677.Google Scholar
Karhola, M., Vaino, A. & Edelmann, E. (1986). Selenium yeast. Annals in Clinical Research 18, 6568.Google Scholar
Levander, O. A., Alftan, G., Arvilommi, H., Huttunen, J. K., Kataja, M., Koivistoinen, P. & Pikkarainen, J. (1983). Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters. American Journal of Clinical Nutrition 37, 887897.CrossRefGoogle ScholarPubMed
Levander, O. A. & Morris, V. C. (1984). Dietary selenium levels needed to maintain balance in North American adults consuming self–selected diets. American Journal of Clinical Nutrition 39, 809815.Google Scholar
Luo, X., Wei, H., Yang, C., Xing, J., Qiao, C., Feng, Y., Liu, J., Liu, Z., Wu, Q., Liu, Y., Stoecker, B. J., Spallholz, J. E. & Yang, S. P. (1985). Selenium intake and metabolic balance of 10 men from a low selenium area of China. American Journal of Clinical Nutrition 42, 3137.CrossRefGoogle ScholarPubMed
Meltzer, H. M., Norheim, G., Bibow, K., Myhre, K. & Holm, H. (1990). The form of selenium determines the response to supplementation in a selenium replete population. European Journal of Clinical Nutrition 44, 435446.Google Scholar
Moksnes, K. & Norheim, G. (1983). Selenium and glutathione peroxidase levels in lambs receiving feed supplemented with sodium selenite or selenomethionine. Acta Veterinaria Scandinavica 24, 4558.CrossRefGoogle ScholarPubMed
Moksnes, K. & Norheim, G. (1986). A comparison of selenomethionine and sodium selenite as a supplement in chicken feeds. Acta Veterinaria Scandinavica 27, 103114.CrossRefGoogle ScholarPubMed
Motsenbocker, M. A. & Tappel, A. L. (1982). Selenocysteine-containing proteins form rat and monkey plasma. Biochimica et Biophysica Acta 704, 253260.CrossRefGoogle ScholarPubMed
Mutanen, M. (1986). Bioavailability of selenium in mushrooms, Boletus edulis, to young women. International Journal of Vitamin and Nutrition Research 56, 297301.Google Scholar
Mutanen, M., Alftan, G., Arvilommo, H., Koivistoinen, P. & Varo, P. (1985). Correlation between dietary selenium, platelet GSH-Px activity and plasma selenium level. Näringsforskning 4, 135138.Google Scholar
Mutanen, M., Koivistoinen, P., Morris, V. C. & Levander., O. A. (1987). Relative nutritional availability to rats of selenium in Finnish spring wheat (Triticum aestivum L.) fertilized or sprayed with sodium selenate and in an American winter bread wheat naturally high in Se. British Journal of Nutrition 57, 319329.CrossRefGoogle ScholarPubMed
Norheim, G. (1989). High productivity analyses of elements in foods using automated digestion and atomic absorption techniques. Proceedings of the Fifth European Conference on Food Chemistry, Versailles, Vol. 2, pp. 730734. Paris: Institut National de la Recherche Agronomique.Google Scholar
Norheim, G. & Haugen, A. (1986). Precise determination of selenium in tissues using automated wet digestion and an automated hydride generator-atomic absorption spectroscopy system. Acta Pharmacologica et Toxicologica 59, Suppl. VIII, 610612.Google Scholar
Norwegian Nutrition Council (1977). Food Composition Tables. Oslo: The National Association for Nutrition and Health.Google Scholar
Olson, O. E., Novacek, E. J., Whitehead, E. I. & Palmer, I. S. (1970). Investigations on selenium in wheat. Phytochemistry 9, 11811188.Google Scholar
Ringstad, J., Jacobsen, B. K. & Thomassen, Y. (1987). The Tromsø heart study: Relationships between the concentration of selenium in serum and risk factors for coronary heart disease. Journal of Trace Elements and Electrolytes in Health and Disease 1, 2731.Google Scholar
Robinson, M. F., Rea, H. M., Friend, G. M., Steward, R. H. D., Snow, P. C. & Thomson, C. D. (1978). On supplementing the selenium intake of New Zealanders. 2. Prolonged metabolic experiments with daily supplements of selenomethionine, selenite and fish. British Journal of Nutrition 39, 589600.CrossRefGoogle ScholarPubMed
Robinson, J. R., Robinson, M. F., Levander, O. A. & Thomson, C. D. (1985). Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes. American Journal of Clinical Nutrition 41, 10231031.Google Scholar
Thomson, C. D., Ong, L. K. & Robinson, M. F. (1985). Effects of supplementation with high-selenium wheat bread on selenium, glutathione peroxidase and related enzymes in blood components of New Zealand residents. American Journal of Clinical Nutrition 41, 10151022.Google Scholar
Yang, G., Wang, S., Zhou, R. & Sun, S. (1983). Endemic selenium intoxication of humans in China. American Journal of Clinical Nutrition 37, 872881.CrossRefGoogle ScholarPubMed
Yang, G., Zhu, Z., Liu, S., Gu, L., Qian, P., Huang, J. & Lu, M. (1987). Human selenium requirements in China. In Proceedings of the Third International Symposium on Selenium in Biology and Medicine, pp. 589607 [Combs, G.F., Spallholz, J. E., Levander, O. A. and Oldfield, J. E., editors]. New York: AVI.Google Scholar