Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T21:43:12.378Z Has data issue: false hasContentIssue false

Quantitative aspects of the transformations of sulphur in sheep

Published online by Cambridge University Press:  24 July 2007

P. M. Kennedy
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
L. P. Milligan
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. [35S]sulphate was used to obtain quantitative estimates of the transfer of sulphur between the blood, rumen and postruminal tract of four sheep given brome grass (Bromus inermis) pellets or lucerne (Medicago sativa) pellets at the rate of 33 or 66 g/h. Sodium sulphate (0–4 g S/d) was infused into the rumen or abomasum of sheep given brome grass during four periods of 19 d and was not infused into the sheep during a subsequent period in which lucerne was given. The flow of sulphide, sulphate, microbial S and non-microbial organic S from the abomasum was estimated using 103Ru and 51Cr.

2. The concentration of inorganic sulphate in serum was increased to maximum values of 35–46 mg S/l by infusion of sulphate into the rumen or abomasum. The rate of irreversible loss of serum sulphate and rumen sulphide was positively related to the amount of sulphate infused.

3. Reabsorption of sulphate by the kidney reached a maximum of 0.69–1.1 mmol sulphate/l glomerular filtrate.

4. The transfer of sulphate from blood to the rumen was related to the concentration of inorganic sulphate in serum, attaining maximum values of 133 (±13) mg S/d for sheep given brome grass plus sulphate, and 127–159 mg S/d for sheep given lucerne.

5. Bacteria derived 0.52–0.67 of organic S from rumen sulphide in sheep given brome grass, and approximately 0.45 of bacterial organic S was derived from sulphide for sheep given lucerne. Protozoa derived approximately 0.90 of organic S from bacteria.

6. It was estimated that endogenous organic S contributed 300–340 mg S/d to the rumen, and that 0.24–0.45 of S digested in the rumen was derived from endogenous sources.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Anderson, C. M. (1956). N.Z. Jl Sci. Technol. 37, 379.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Berglund, F. (1960). Acta Physiol. scand. 49, Suppl. 172.Google Scholar
Bird, P. R. (1971). Aust. J. biol. Sci. 24, 1329.CrossRefGoogle Scholar
Bird, P. R. (1972 a). Aust. J. biol. Sci. 25, 817.Google Scholar
Bird, P. R. (1972 b). Aust. J. biol. Sci. 25, 1073.Google Scholar
Bird, P. R. & Fountain, R. D. (1970). Analyst, Lond. 95, 98.CrossRefGoogle Scholar
Bird, P. R. & Hume, I. D. (1971). Aust. J. agric. Res. 22, 443.Google Scholar
Bird, P. R. & Moir, R. J. (1971). Aust. J. biol. Sci. 24, 1319.CrossRefGoogle Scholar
Bird, P. R. & Thornton, R. F. (1972). Aust. J. biol. Sci. 25, 1299.Google Scholar
Blackburn, T. H. & Hobson, P. N. (1960). Br. J. Nutr. 14, 445.CrossRefGoogle Scholar
Bray, A. C. (1969 a). Aust. J. agric. Res. 20, 739.Google Scholar
Bray, A. C. (1969 b). Aust. J. agric. Res. 20, 749.Google Scholar
Bray, A. C. & Hemsley, J. A. (1969). Aust. J. agric. Res. 20, 759.CrossRefGoogle Scholar
Bray, A. C. & Till, A. R. (1975). In Digestion and Metabolism in the Ruminant [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Cheng, K.-J., Akin, D. E. & Costerton, J. W. (1976). Fedn Proc. Fedn Am. Socs exp. Biol. 36, 193.CrossRefGoogle Scholar
Clarke, E. M., Ellinger, G. M. & Phillipson, A. T. (1966). Proc. Roy. Soc. B 166, 63.Google Scholar
Dziewiatkowski, D. D. (1949). J. biol. Chem. 178, 389.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in Ruminants [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Gawthorne, J. M. & Nader, C. J. (1976). Br. J. Nutr. 35, 11.CrossRefGoogle Scholar
Hecker, J. F. (1973). J. agric. Sci., Camb. 80, 63.Google Scholar
Hogan, J. P. (1961). Aust. J. biol. Sci. 14, 448.Google Scholar
Hogan, J. P. (1975). J. Dairy Sci. 58, 1164.Google Scholar
Huisingh, J., McNeill, J. J. & Matrone, G. (1974). Appl. Microbiol. 28, 489.Google Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.Google Scholar
Kay, R. N. B. (1960). J. Physiol., Lond. 150, 515.Google Scholar
Kent, P. W. & Marsden, J. C. (1963). Biochem. J. 87, 38P.Google Scholar
Kennedy, P. M. (1974). Aust. J. agric. Res. 25, 1015.Google Scholar
Kennedy, P. M., Christopherson, R. J. & Milligan, L. P. (1976). Br. J. Nutr. 36, 231.Google Scholar
Kennedy, P. M., Hogan, J. P., Lindsay, J. R. & Hogan, R. M. (1976). Aust. J. biol. Sci. 29, 525.Google Scholar
Kennedy, P. M., Williams, E. R. & Siebert, B. D. (1975). Aust. J. biol. Sci. 28, 31.CrossRefGoogle Scholar
Lotspeich, W. D. (1947). Am. J. Physiol. 151, 311.Google Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 25, 351.Google Scholar
Moir, R. J. (1970). In Symposium: Sulfur in Nutrition [Muth, O. H. and Oldfield, J. E., editors]. Westport, Conn., USA: AVI Publishing Co.Google Scholar
Nader, C. J. & Walker, D. J. (1970). Appl. Microbiol. 20, 677.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). Br. J. Nutr. 35, 127.CrossRefGoogle Scholar
Peirce, A. W. (1960). Aust. J. agric. Res. 11, 548.Google Scholar
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. B. (1970). Br. J. Nutr. 24, 589.Google Scholar
Postgate, J. R. (1965). Bact. Rev. 29, 425.CrossRefGoogle Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for in vivo Kinetics. New York and London: Academic Press.Google Scholar
Stacy, B. D. & Thorburn, G. D. (1966). Science, N. Y. 152, 1076.Google Scholar
Tan, T. N., Weston, R. H. & Hogan, J. P. (1971). Int. J. appl. Radiat. Isotopes 22, 301.Google Scholar
Walker, D. J. & Nader, C. J. (1975). Aust. J. agric. Res. 26, 689.Google Scholar
Whiting, F., Slen, S. B., Bezeau, L. M. & Clark, R. D. (1954). Can. J. agric. Sci. 34, 261.Google Scholar