Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:08:35.579Z Has data issue: false hasContentIssue false

Pancreatic digestive hydrolase activities in growing rats fed alternately on raw and heated soya-bean flour

Published online by Cambridge University Press:  09 March 2007

Fatima Khalifa
Affiliation:
Université de Bourgogne, Unité de Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, B.P. 138, 21004 Dijon cedex, France
Josiane Prost
Affiliation:
Université de Bourgogne, Unité de Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, B.P. 138, 21004 Dijon cedex, France
Jacques Belleville
Affiliation:
Université de Bourgogne, Unité de Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, B.P. 138, 21004 Dijon cedex, France
Louis Sarda
Affiliation:
Université de Provence, Laboratoire de Biochimie, Faculté des Sciences St Charles, Place Victor Hugo, 13331 Marseille cedex 3, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The time-course effects of two diets containing raw (RSF) or heated (HSF) soya-bean flour on the digestive enzyme levels in the pancreas and in pancreatic juice were investigated in growing rats fed, alternately, on RSF or HSF diets for two 4-week periods. These values were compared with those obtained in a control group fed on a casein diet. RSF and HSF diets lowered N balance (84.8 (SE 0.9), 82.6 (SE 0.8) and 79.9 (SE 0.8) % with control, HSF and RSF diets respectively, at the third week). However, they increased protease activities compared with the control diet (3-fold for trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) activities in pancreas contents and outputs with the RSF diet; 2-fold for trypsin in pancreas contents and outputs and by 60% for chymotrypsin contents with the HSF diet). The poorer nutritional N utilization might be attributable to soya-bean flour heat-stable (lectins) and heat-labile components (trypsin inhibitors). The decrease in lipid apparent digestibilities in RSF and HSF diets (97.0 (SE 0.8), 91.1 (SE 09) and 90.4 (SE 0.7) % with control, RSF and HSF diets at the seventh week) were correlated with a diminution in apparent lipase (EC 3,1.1.3; measured without addition of exogenous colipase), potential lipase (measured with addition of saturated amounts of exogenous colipase) and colipase activities. Compared with control values, gains in potential and apparent lipase outputs were diminished by nearly 40% and gain in colipase outputs by 60% with RSF and HSF diets. These results show clearly that heated or raw soya-bean flours have a significant inhibitory effect on lipase digestive enzyme activities in the pancreas and in its secretion, which might explain impaired lipid digestibility.

Type
Effect of soya bean on digestive enzymes
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Armitage, P. & Berry, P. (1987). Statistical Methods in Medical Research, 2nd ed., pp. 222226. Oxford: Blackwell Scientific Publications.Google Scholar
Belleville, J. & Clement, J. (1971). Effets de facteur nutritionnels et hormonaux sur I'activite phospholipasique A2, du suc pancrkatique chez le rat CveilI-5 (Effects of nutritional and hormonal factors on pancreatic juice phospholipase A, activity in the conscious rat). Archives des Sciences Physiologiques 25, 5983.Google Scholar
Belleville, J., Prost, J. & Gillet, M. (1978). Effets de regimes riches en triglyckrides et en phospholipides sur les activites de la lipase et de la phospholipase A2 du suc pancrtatique et du pancrtas de rat (Effects of diets enriched with triacylglycerols or phospholipids on lipase and phospholipase A2, activities in rat pancreatic juice and pancreas). Archives Internationale de Physiologie et de Biochimie 86, 631643.CrossRefGoogle Scholar
Brand, S. J. & Morgan, R. G. H. (1981). The release of rat intestinal cholecystokinin after oral trypsin inhibitor measured by bio-assay. Journal of Physiology (London) 319, 325343.CrossRefGoogle Scholar
Canioni, P., Julien, R., Rathelot, J. & Sarda, L. (1977). Pancreatic and microbial lipases: a comparison of the interaction of pancreatic colipase with lipases of various origins. Lipids 12, 393397.CrossRefGoogle ScholarPubMed
Colwell, A. R. (1951). Collection of pancreatic juice from rats and consequences of its continued loss. American Journal of Physiology 164, 812821.CrossRefGoogle ScholarPubMed
Council of European Communities (1986). Directives of the council concerning animal protection forthe use of living animals in scientific investigations. Official Journal of European Communities, 86/609, L358, 128.Google Scholar
Crass, R. A. & Morgan, R. G. H. (1982). The effect of long-term feeding of soya-bean flour on pancreatic growth in the rat. British Journal of Nutrition 47, 119129.CrossRefGoogle ScholarPubMed
De Muelenaere, H. J. (1964). Studies on the digestion of soybeans. Journal of Nutrition 82, 197205.CrossRefGoogle ScholarPubMed
Figarella, C. (1966). Composition et stabiliti de I'equipement enzymatique du pancrkas de I'homme et de divers animaux, (Composition and stability of pancreatic enzyme secretions of humans and various animals). Bulletin de la Soci&d de Chimie Biologique 48, 97115.Google Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Simple method for isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Gargouri, Y., Julien, R., Pieroni, G., Verger, R. & Sarda, L. (1984). Studies on the inhibition of pancreatic and microbial lipases by soybean proteins. Journal of Lipid Research 25, 12161221.CrossRefGoogle ScholarPubMed
Grant, G., Watt, W. B., Stewart, J. C. & Pusztai, A. (1987). Effects of dietary soyabean (Glycine max) lectin and trypsin inhibitors upon the pancreas of rats. Medical Sciences and Research in Biochemistry 15, 11971205.Google Scholar
Green, G. M., Van Levan, H. & Liddle, R. A. (1986). Plasma CCK and pancreatic growth during adaptation to dietary proteins. American Journal of Physiology 251, G70G74.Google Scholar
Gumbmann, M. R., Spangler, W. L., Dugan, G. M. & Rackis, J. J. (1986). Safety of trypsin inhibitors in the diet: effects on the rat pancreas of long-term feeding of soy flour and soy protein isolate. Advances in Experimental Medicine and Biology 199, 3377.CrossRefGoogle ScholarPubMed
Kakade, M. L., Hoffa, D. E. & Liener, I. E. (1973). Contribution of trypsin inhibitors to the deleterious effect of unheated soyabean fed to rats. Journal of Nutrition 103, 11721177.CrossRefGoogle Scholar
Khalifa, F., Bertrand, V., Belleville, J., Sarda, L. & Prost, J. (1992). Short term effect of feeding raw or heated soya flour and casein meals on lipid intestinal digestion and absorption in rat. Journal of Nutritional Biochemistry 3, 228231.CrossRefGoogle Scholar
Konijn, A. M., Birk, Y. & Gugenheim, K. (1970). Pancreaticenzyme pattern in rats as affected by dietary soyabedn flour. Journal of Nutrition 100, 361368.CrossRefGoogle Scholar
Lavau, M., Bazin, R. & Herzog, J. (1974). Comparative effect of oral and parenteral feeding on pancreatic enzymes in the rat. Journal of Nutrition 104, 14321437.CrossRefGoogle ScholarPubMed
Liener, I. E. (1981). Factors affecting the nutritional quality of soya products. Journal of the American Oil Chemist's Society 58, 406415.CrossRefGoogle Scholar
Liener, I. E. & Kakade, I. E. (1980). Protease inhibitors. In Toxic Constituents of Plant Foodstufs, pp. 771 [Liener, I. E., editor]. New York: Academic Press.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
MacGuiness, E. E., Morgan, R. G. & Wormsley, K. G. (1984). Effects of soybean flour on the pancreas of rats. Environmental Health Perspectives 56, 205212.CrossRefGoogle Scholar
Naim, H., Gertler, A. & Birk, Y. (1982). The effect of dietary raw and autoclaved soya-bean protein fractions on growth, pancreatic enlargement and pancreatic enzymes in rats. British Journal of Nutrition 47, 281288.CrossRefGoogle ScholarPubMed
Ouagued, M. & Girard-Globa, A. (1980). A rapid and reliable method for determination of colipase. Biochimie 64, 301302CrossRefGoogle Scholar
Prost, J., Belleville, J. & Valantin-Rollet, C. (1988). Effects of age and protein malnutrition followed by a balanced diet on the non-parallel change in digestive enzymes in the pancreas and their secretion in the rat. British Journal of Nutrition 60, 619625.CrossRefGoogle ScholarPubMed
Rackis, J. J. (1981). Significance of soya trypsin inhibitors in nutrition. Journal of the American Oil Chemist's Society 58, 495500.CrossRefGoogle Scholar
Rathelot, J., Julien, R., Canioni, P., Coeroli, C. & Sarda, L. (1975). Studies on the effect of bile salts and colipase on enzymatic lipolysis. Improved method for the determination of lipase and colipase. Biochimie 57, 11171120.CrossRefGoogle ScholarPubMed
Satouchi, K. & Matsushita, S. (1976). Purification and properties of lipase inhibiting protein from soybean cotyledon. Agricultural and Biological Chemistry 40, 889897.Google Scholar
Temler, R. S. & Mettraux, C. (1986). Gastrin and cholecystokinin levels in rats fed soya bean trypsin inhibitor. Advances in Experimental Medicine and Biology 199, 133141.CrossRefGoogle ScholarPubMed
Van Tilbeurgh, H., Sarda, L., Verger, R. & Cambillau, C. (1992). Structure of the pancreatic lipase-procolipase complex. Nature 359, 159162.CrossRefGoogle ScholarPubMed
Widmer, F. (1977). Pancreatic lipase effectors extracted from soyabean meal. Journal of Agricultural and Food Chemistry 25, 11421145.CrossRefGoogle Scholar