Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T21:30:23.354Z Has data issue: false hasContentIssue false

Nitrogen metabolism in calves: Effect of giving different amounts of dietary casein with and without formaldehyde treatment

Published online by Cambridge University Press:  10 January 2017

A. P. Williams
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Calves were given a basal diet of straw and flaked maize (12 g nitrogen/kg dry matter (DM)) or diets with some flaked maize replaced by untreated (UT) casein or formaldehyde-treated (FT) casein to give 19, 26 or 34 g N/kg DM.

2. At all intakes rumen ammonia concentrations were lower and amounts of total-N, non-ammonia-N and amino acid-N entering the duodenum were higher when FT-rather than UT-casein supplements were given.

3. Direct measurement of casein entering the duodenum indicated that giving FT rather than UT casein led to much greater amounts of dietary casein escaping degradation in the rumen (70–90% compared to 10–20%). Calculated values for fermentable N indicated that with this low degradability diets containing FT-casein would have provided inadequate N for maximum microbial synthesis in the rumen, and this probably accounted for the marked reduction in amounts of non-casein-N entering the duodenum when FT rather than UT casein was given.

4. Amino acid patterns in duodenal digesta samples after giving the basal diet or diets containing UT-casein were similar. Giving diets containing FT-casein led to changes in this pattern which could sometimes, although not always, be accounted for by estimated differences in proportions of dietary and microbial proteins.

5. At the highest level of N intake FT-casein-supplemented diets led to significantly higher concentrations of most essential amino acids and lower concentrations of most non-essential amino acids in plasma than did UT-casein-supplemented diets. Plasma urea concentrations increased with increasing N intake but were not significantly different for UT- and FT-casein-supplemented diets.

Type
Papers on General Nutrition
Copyright
Copyright © The Authors 1976

References

Barry, T. N. (1972). N. Z. Jl agric. Res. 15, 107.CrossRefGoogle Scholar
Conway, E. J. (1957). Microdiffusion Analysis and Volumetric Error, 4th ed., p. 98. London: Crosby, Lockwood & Son Ltd. Google Scholar
Evans, R. A., Axford, R. F. E. & Offer, N. W. (1975). Proc. Nutr. Soc. 34, 65A.Google Scholar
Faichney, G. J. (1974 a). Aust. J. agric. Res. 25, 583.CrossRefGoogle Scholar
Faichney, G. J. (1974 b). Aust. J. agric. Res. 25, 599.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Fraser, I. E. B. & Haden, D. D. (1970). Proc. N.Z. Soc. Anim. Prod. 50, 240.Google Scholar
Hagemeister, H. & Pfeffer, E. (1973). Z. Tierphysiol. Tierernähr. Futtermittelk. 31, 275.CrossRefGoogle Scholar
Hemsley, J. A., Reis, P. J. & Downes, A. M. (1973). Aust. J. biol. Sci. 26, 961.Google Scholar
McDonald, I. W. & Hall, R. J. (1957). Biochem. J. 67, 400.CrossRefGoogle Scholar
MacRae, J. C., Ulyatt, M. J., Pearce, P. D. & Hendtlass, J. (1972). Br. J. Nutr. 27, 39.CrossRefGoogle Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.Google Scholar
Offer, N. W., Evans, R. A. & Axford, R. F. E. (1971). Proc. Nutr. Soc. 30, 42A.Google Scholar
Preston, R. L., Schnakenberg, D. D. & Pfander, W. H. (1965). J. Nutr. 86, 287.Google Scholar
Reis, P. J. & Tunks, D. A. (1969). Aust. J. agric. Res. 20, 775.Google Scholar
Reis, P. J. & Tunks, D. A. (1970). Aust. J. biol. Sci. 23, 673.CrossRefGoogle Scholar
Rimington, C. & Kay, H. D. (1926). Biochem. J. 20, 777.CrossRefGoogle Scholar
Satter, L. D. & Slyter, L. L. (1974). Br. J. Nutr. 32, 199.CrossRefGoogle Scholar
Schmidt, S. P., Benevenga, N. J. & Jorgensen, N. A. (1974). J. Anim. Sci. 38, 646.Google Scholar
Schmidt, S. P., Jorgensen, N. A. & Benevenga, N. J. (1972). J. Anim. Sci. 35, 274.Google Scholar
Sharma, H. R. & Ingalls, J. R. (1974). Can. J. Anim. Sci. 54, 157.CrossRefGoogle Scholar
Sharma, H. R., Ingalls, J. R. & Mc>Kirdy, J. A. (1972). Can. J. Anim. Sci. 52, 363.Kirdy,+J.+A.+(1972).+Can.+J.+Anim.+Sci.+52,+363.>Google Scholar
Sharma, H. R., Ingalls, J. R. & Parker, R. J. (1974). Can. J. Anim. Sci. 54, 305.Google Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.Google Scholar
Technicon Instruments Corporation (1967). Technicon Method Sheet N-4B. Tarrytown, New York: Technicon Instruments Corporation.Google Scholar
Williams, A. P. (1974). Amino acid requirements of the young bovine. Ph.D. Thesis, Reading University.Google Scholar
Williams, A. P., McAllan, A. B. & Smith, R. H. (1973). Proc. Nutr. Soc. 32, 85A.Google Scholar
Williams, A. P. & Smith, R. H. (1974). Br. J. Nutr. 32, 421.CrossRefGoogle Scholar
Williams, A. P. & Smith, R. H. (1975). Proc. Nutr. Soc. 35, 43A.Google Scholar
Williams, P. P. & Dinusson, W. E. (1973). J. Anim. Sci. 36, 151.Google Scholar