Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:52:21.795Z Has data issue: false hasContentIssue false

NaFe3+EDTA as a food fortificant: influence on zinc, calcium and copper metabolism in the rat

Published online by Cambridge University Press:  09 March 2007

Richard F. Hurrell
Affiliation:
Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, PO Box 44, CH-1000 Lausanne 26, Switzerland
Sandra Ribas
Affiliation:
Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, PO Box 44, CH-1000 Lausanne 26, Switzerland
Lena Davidsson
Affiliation:
Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, PO Box 44, CH-1000 Lausanne 26, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The general acceptance of NaFe3+EDTA for food Fe fortification has been partly restricted by concern over the influence of EDTA on the metabolism of other nutritionally important trace elements and minerals. We have investigated the influence of NaFe3+EDTA, and of increasing dietary levels of Na2EDTA, on Zn, Cu and Ca metabolism in rats fed on Zn-sufficient and Zn-deficient soya-bean-isolate- based diets. With the Zn-deficient diets, changing the dietary Fe compound from FeSO4 to NaFe3+- EBTA significantly (P < 0·05) increased mean apparent Zn absorption from 50·2 to 67·4%. urinary Zn excretion from 2·0 to 4·0% of intake, and Zn retention from 48·2 to 63·4%. Increasing the dietary EDTA level to 1000 mg/kg further increased Zn absorption to 78·1%, urinary Zn excretion to 15·6% of intake and Zn retention to 62·5%. Increased Zn retention was accompanied by a significant increase in weight gain indicating that the extra Zn was available for normal metabolic processes. With rats fed on the Zn-sufficient diet, NaFe3+EDTA and Na2EDTA similarly increased the absorption, urinary excretion and retention of Zn but to a lesser extent. NaFe3+EDTA, however, had no influence on the absorption, urinary excretion and retention of Cu and Ca, and additional Na2EDTA caused only minor increases in Cu absorption and retention and in the urinary excretion of Ca. We conclude that using NaFe3+EDTA as a food fortificant would have no detrimental effect on the metabolism of Zn, Cu and Ca and, in some situations, could improve Zn absorption and retention from low-bioavailability diets.

Type
Effects of fortification on other minerals
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

American Institute of Nutrition (1977). Report of the American Institute of Nutrition ad hoc committee on standards of nutritional studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Ballot, D. E., MacPhail, A. P., Bothwell, T. H., Gillooly, M. & Mayet, F. G. (1989). Fortification ofcurry powder with NaFe(II1)EDTA in an iron-deficient population: report of a controlled iron-fortification trial. American Journal of Clinical Nutrition 49, 162169.CrossRefGoogle Scholar
Candela, E., Camacho, M. V., Martinez-Torres, C.. Perdomo, J., Mazzari, G., Acurero, G. & Layrisse, M. (1984). Iron absorption studies by humans and swine from iron (III)-EDTA. Further studies. Journal of Nutrition 114, 22042211.CrossRefGoogle ScholarPubMed
Charlton, R. W. & Bothwell, T. H. (1983). Iron absorption. Annual Review of Medicine 34, 5568.CrossRefGoogle ScholarPubMed
Cook, J. D. & Monsen, E. R. (1976). Food iron absorption in man II. The effect of EDTA on absorption of dietary non-heme iron. American Journal of Clinical Nutrition 29, 614620.CrossRefGoogle ScholarPubMed
Cook, J. D. & Reusser, M. (1983). Iron fortification: an update. American Journal of Clinical Nutrition 38, 648659.CrossRefGoogle ScholarPubMed
Davis, P. S. & Deller, D. J. (1967). Effect of orally administered chelating agents EDTA, DTPA and fructose on radioiron absorption in man. Australasian Annals of Medicine 16, 7074.CrossRefGoogle ScholarPubMed
DeMaeyer, E. & Adiels-Tegman, M. (1985). The prevalence of anaemia in the world. World Health Statistics Querterly 38, 302316.Google ScholarPubMed
El-Khoury, A. E. (1991). Recent developments in the search for methods of assessing zinc status. Trends in Food Science and Technology 2, 1012.CrossRefGoogle Scholar
Forbes, A. L., Adams, C. E., Arnaud, M. J., Chichester, C. O., Cook, J. D., Harrison, B. N., Hurrell, R. F., Kahn, S. G., Morris, E. R., Tanner, J. T. & Whittaker, P. (1989). Comparison of in vitro, animal and clinical determinations of iron bioavailability. International Nutritional Anemia Consultative Group task force report on iron bioavailability. American Journal of Clinical Nutrition 49, 225238.CrossRefGoogle ScholarPubMed
Forbes, R. M. (1961). Excretory patterns and bone deposition of zinc, calcium and magnesium in the rat as influenced by zinc deficiency, EDTA and lactose. Journal of Nutrition 74, 193200.CrossRefGoogle Scholar
Garby, L. & Areekul, S. (1974). Iron supplementation in Thai fish sauce. Annals of Tropical Medicine and Parasitology 68, 467476.CrossRefGoogle ScholarPubMed
Gillooly, M., Bothwell, T. H., Torrance, J. D., McPhail, A. P., Derman, D. P., Beswoda, W. R., Mills, W.,Charlton, R. W. & Mayet, F. (1983). The effects of organic acids, phytates and polyphenols on iron absorption from vegetables. British Journal of Nutrition 49, 331342.CrossRefGoogle ScholarPubMed
Hallberg, L., Rossander, L., Persson, H. & Svahn, E. (1982). Deleterious effects of prolonged warming of meals on ascorbic acid content and iron absorption. American Journal of Clinical Nutrition 36, 846850.CrossRefGoogle ScholarPubMed
Hallberg, L., Rossander, L. & Skanberg, A.-B. (1987). Phytates and the inhibitory effect of bran on iron absorption in man. American Journal of Clinical Nutrition 45, 988996.CrossRefGoogle ScholarPubMed
Hurrell, R. F. (1984). Bioavailability of different iron compounds used to fortify formulas and cereals: technological problems. In Iron Nutrition in infancy and Childhood, pp. 147178 [Stekel, A., editor]. New York: Raven Press.Google Scholar
Hurrell, R. F. (1992). Prospects for improving iron fortification of foods. In Nutritional Anemias. pp. 193208 [Fomon, S. and Zlotkin, S., editors]. New York, NY: Raven Press.Google Scholar
Hurrell, R. F., Furniss, D. E., Burri, J., Whittaker, P., Lynch, S. R. & Cook, J. D. (1989). Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate. American Journal of Clinical Nutrition 49, 1274 1282.CrossRefGoogle ScholarPubMed
Hurrell, R. F., Juillerat, M.-A., Reddy, M. B., Lynch, S. R., Dassenko, S. A. & Cook, J. D. (1992). Soy protein, phytate and iron absorption in man. American Journal of Clinical Nutrition 56, 573578.CrossRefGoogle Scholar
Hurrell, R. F., Reddy, M. B., Dassenko, S. A., Cook, J. D. & Shepherd, D. (1991). Ferrous fumarate fortification of a chocolate drink powder. British Journal of Nutrition 65, 271283.CrossRefGoogle ScholarPubMed
International Nutritional Anemia Consultative Group (1977). Guidelines, for the Eradication of Iron Deficiency Anemia. New York: Nutrition Foundation.Google Scholar
Koike, T. I., Kratzer, F. H. & Vohrd, P. (1964). Intestinal absorption of zinc or calcium-ethylenediaminetetraacetic acid complexes in chickens. Proceedings of the Society of Experimental Biology and Medicine 117, 483486.CrossRefGoogle ScholarPubMed
Kratzer, F. H., Allred, J. B., Davis, P. N., Marshall, B. J. & Vohra, P. (1959). The effect of autoclaving soybean protein and the addition of ethylenediaminetetracetic acid on biological availability of dietary zinc for turkey poults. Journal of Nutrition 68, 313322.CrossRefGoogle ScholarPubMed
Layrisse, M. & Martinez-Torres, C. (1977). Iron(III)-EDTA complex as iron fortification. American Journal of Clinical Nutrition 30, 11661174.CrossRefGoogle ScholarPubMed
Layrisse, M., Martinez-Torres, C., Mendez-Castellano, H., Taylor, P., Fossi, M., Lopez de Blanco, M., Landaeta- Jimenez, M., Jaffe, W., Leets, I., Tropper, E., Garcia-Casal, M. N. & Ramirez, J. (1990). Relationship between iron bioavailability from diets and prevalence of iron deficiency. Food and Nutrition Bulletin 12, 301309.CrossRefGoogle Scholar
Lönnerdal, B., Bell, J. G., Hendrickx, A. G., Burns, R. A. & Keen, C. L. (1988). Effect of phytic acid removal on zinc absorption from soy formula. American Journal of Clinical Nutrition 48, 13011306.CrossRefGoogle ScholarPubMed
MacPhail, A. P., Bothwell, T. H., Torrance, J. D., Derman, D. P., Bezwoda, W. R. & Charlton, R. W. (1981). Factors affecting the absorption of iron from iron(I1I)EDTA. British Journal of Nutrition 45, 215227.CrossRefGoogle Scholar
MacPhail, P., Charlton, R., Bothwell, T. H. & Bezwoda, W. (1985). Types of iron fortificants. Experimental fortificants. In Iron Fortification of food. pp. 5571 [Clydesdale, F. M. and Wiemer, K. L., editors]. Orlando: Academic Press Inc.CrossRefGoogle Scholar
Martinez-Torres, C., Romano, E. L., Renzi, M. & Layrisse, M. (1979). Iron(III)-EDTA complex as iron fortification. Further studies. American Journal of Clinical Nutrition 32, 809816.CrossRefGoogle ScholarPubMed
Oberleas, D., Muhrer, M. E. & O'Dell, B. L. (1966). Dietary metal complexing agents and zinc availability in the rat. Journal of Nutrition 90, 5662.CrossRefGoogle ScholarPubMed
Scott, M. L. & Ziegler, T. R. (1963). Evidence for naturalt chelates which aid in the utilization of zinc by chicks. Agricultural and Food Chemistry 11, 123125.CrossRefGoogle Scholar
Solomons, N. W., Jacob, R. A., Pineda, O. & Viteri, F. E. (1979). Studies on the bioavailability of zinc in man. Effects of the Guatamalan rural diet and of the iron-fortifying agent, NaFeEDTA. Journal of Nutrition 109, 15191528.CrossRefGoogle Scholar
Stekel, A., Olivares, M., Pizarro, F., Chadud, P., Lopez, I. & Amar, M. (1986). Absorption of fortification iron by milk formulas in infants. American Journal of Clinical Nurrition 43, 917922.CrossRefGoogle ScholarPubMed
Suso, F. A. & Edwards, H. M. (1968). Influence of various chelating agents on absorption of 60Cu, 59Fe,54Mn and 65Zn by chickens. Poultry Science 47, 14171425.CrossRefGoogle Scholar
West, T. S. & Sykes, A. S. (1960). Diamino-ethane-tetra-acetic acid and its complexes. In Analytical Applications of Diamino-elhane-tetra-acetic acid, 2nd ed., pp. 922, Poole, Dorset: The British Drug Houses Ltd.Google Scholar