Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T01:41:37.002Z Has data issue: false hasContentIssue false

Kinetics of amino acid and glucose absorption following pancreatic diversion in the pig

Published online by Cambridge University Press:  09 March 2007

A. Rérat
Affiliation:
Departement NASA, CRJ-INRA, Domaine de Vilvert, Jouy-en-Josas 78352, France
R. Calmes
Affiliation:
Departement NASA, CRJ-INRA, Domaine de Vilvert, Jouy-en-Josas 78352, France
T. Corring
Affiliation:
UEPSD, CRJ-INRA, Dornaine de Vilvert, Jouy-en-Josas 78352, France
P. Vaissade
Affiliation:
UEPSD, CRJ-INRA, Dornaine de Vilvert, Jouy-en-Josas 78352, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An experiment was conducted in the pig to determine the consequences of deprivation of exocrine pancreatic secretion on the composition and quantity of nutrients absorbed after intake of a balanced diet. Five growing pigs (53·8 kg body weight) were fitted with permanent catheters in the portal vein and the carotid artery and with an electromagnetic flow probe around the portal vein to measure the exchanges between the blood and the intestinal lumen. They were also fitted with a permanent catheter in the duct of Wirsung to educe the exocrine pancreatic secretion and another one in the duodenum in order to reintroduce it. In each animal, glucose, amino-N and amino acid absorption as well as insulin and glucagon production were measured over a period of 10 h after the meal (semi-purified diet based on purified starch and containing 180 g fish meal/kg, DM content of the meal 731 g), either in the presence of pancreatic juice (group C : immediate reintroduction), or in the absence of pancreatic juice (group D: deprivation). The deprivation of pancreatic juice provoked a marked depression in the absorption of glucose (D 67·9 (SEM 27·9) g/10 h, C 437·7 (SEM 39·5) g/10 h, P < 0·00l), and of amino-N (D 7·55 (SEM 0·54) g/10 h, C 15·80 (SEM 0·79) g/10 h, P < 0·001). The composition of the mixture of amino acids in the portal blood was only slightly modified: only the levels of histidine (P < 0·05) and of valine (P < 0·06, NS) decreased in the absence of pancreatic juice. Insulin production was much lower (by 64%, P < 0·05) in the absence of pancreatic juice whereas that of glucagon was not affected.

Type
Nutrient absorption kinetics in pigs
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Anderson, D. M. & Ash, R. W. (1971). The effect of ligating the pancreatic duct on digestion in the pig. Proceedings of the Nutrition Society 30, 34A35A.Google Scholar
Ariyoshi, S. Koike, T. Furuta, F. Ozone, K. Matsumura, Y. Dimick, M. K., Hunter, W. L., Wang, W. & Lopkovsky, S. (1964). The digestion of protein, fat and starch in the depancreatized chicken. Poultry Science 43, 232238.Google Scholar
Clowes, G. H. A. Jr & McPherson, L. B. (1951). Production of fatty livers by ligature of the pancreatic duct in rats. American Journal of Physiology 165, 628638.CrossRefGoogle ScholarPubMed
Corring, T., Aumaitre, A. & Rérat, A. (1972). Fistulation permanente du pancreas exocrine chez le porc. Application: reponse de la secrttion panckatique au repas (Permanent pancreatic fistulation in the pig. Secretory response to meal ingestion.). Annales de Biologie Animale Biochimie Biophysique 12, 109124.Google Scholar
Corring, T. & Bourdon, D. (1977). Effets h long terme de la ligature du canal pancrkatique sur la digestibilite apparente chez le porc (Long-term effects of pancreatic duct ligature on apparent digestibility in the pig.). Annales de Biologie Animale Biochimie Biophysique 17, 579582.CrossRefGoogle Scholar
Corring, T., Calmes, R., Rkrat, A & Gueugneau, A. M. (1984). Effets de l'alimentation proteiprive h court terme sur la secretion d'azote endoghe: secretion pancrtatique exocrine chez le porc (Effect of short-term feeding of a protein-free diet on endogenous nitrogen secretion : exocrine pancreas secretion in the pig). Reproduction Nutrition DPveloppement 24, 495506.CrossRefGoogle Scholar
Corring, T. & Lebas, F. (1977). Effets à court et moyen termes de la ligature du canal pancreatique sur la digestibilité d'un aliment, chez le lapin en croissance et soumis a une alimentation restreinte (Short- and medium-term effects of pancreatic duct ligature on diet digestibility in the food-restricted growing rabbit). Annales de Biologie Animale Biochimie Biophysique 11, 299307.CrossRefGoogle Scholar
Giusi-Périer, A., Fiszlewicz, M. & Rérat, A. (1989). Influence of diet composition on intestinal volatile fatty acid and nutrient absorption in unanaesthetized pigs. Journal of Animal Science 67, 386402.Google Scholar
Henry, Y & Rtrat, A. (1964). Variations des taux CnergCtiques et azotes dans l'alimentation du Porc en croissance. Observations prelimhaires (Effect of levels of energy and protein on performance and carcass composition of the growing-finishing pig). Annales de Biologie Animale Biochimie Biophysique 4, 263271.Google Scholar
Hill, J. B. & Kessler, G. (1961). An automated determination of glucose utilizing a glucose oxidase-peroxidase system. Journal of Laboratory and Clinical Medicine 57, 970980.Google Scholar
Juste, C., Corring, T. & Le Coz, Y. (1983). Bile restitution procedures for studying bile secretion in fistulated pigs. Laboratory Animal Science 33, 199202.Google Scholar
Métais, P. & Bieth, J. (1968). Determination de l'alpha-amylase par une microtechnique (Determination of alpha- amylase by a microtechnique). Annales Biologie Clinique 26, 133142.Google Scholar
Miranda, G. & Pélissier, J. P. (1983). Kinetic studies of in vivo digestion of bovine skim-milk proteins in the rat stomach. Journal of Dairy Research 50, 2736.CrossRefGoogle ScholarPubMed
Palmer, D. W. & Peters, R. (1966). Kinetics of simple automatic determination of aminogroups in serum plasma using trinitrobenzene sulfonate. In Automation in Analytical Chemistry. Technicon Symposium, pp, 324327 [Skeggs, L. T. Jr, editor]. New York: Mediad Inc.Google Scholar
Pekas, J. C., Hays, V. W. & Thompson, A. M. (1964). Exclusion of the exocrine pancreatic secretion. Effect on digestibility of soy bean and milk protein by baby pigs at various ages. Journal ofNutrition 82, 277286.Google Scholar
Prenton, M. A. & London, D. R. (1967). The continuous in vivo monitoring of plasma amino nitrogen. In Fifth Colloquium on Amino Acid Analysis. Technicon Monograph no. 2, pp. 7078. Domont, France: Technicon.Google Scholar
Reboud, J. P., Ben Abdeljlil, A. & Desnuelle, P. (1962). Variations de la teneuren enzymes du pancrias de rat en fonction de la composition des régimes (Changes in the concentrations of enzymes in rat pancreas according to diet composition). Biochimica et Biophysica Acta 58, 326337.Google Scholar
Rérat, A. (1971). Mise au point d'une mtthode quantitative d'étude de l'absorption chez le Porc (Quantitative method for studying digestive absorption in the pig). Annales de Biologie Animafe Biochimie Biophysique 11, 277.CrossRefGoogle Scholar
Rérat, A., Chayvialle, J. A., Kande, J., Vaissade, P., Vaugelade, P. & Bourrier, T. (1985). Metabolic and hormonal effects of test meals with various protein contents in pigs. Canadian Journal of Physiology and Pharmacology 63, 15471559.Google Scholar
Rérat, A., Corring, T., Vaissade, P. & Vaugelade, P. (1977). Postprandialabsorption of a-aminonitrogen and sugars in pigs. Quantitative measurement using discontinuous pancreatic deprivation. Annales de Biologie Animale Biochimie Biophysique 17, 583588.Google Scholar
Rérat, A., Jung, J. & Kandé, J. (1988a). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 2. Individual amino acids. British Journal of Nutrition 60, 105120.Google Scholar
Rerat, A., Simões Nunes, C., Mendy, F. Roger, L. (1988b). Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymic hydrolysate or of free amino acids. British Journal of Nutrition 60, 121136.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes Nunes, C., Mendy, F., Vaissade, P. & Vaugelade, P. (1992). Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non- anaesthetized pig. British Journal of Nutrition 68, 111138.Google Scholar
Rérat, A., Simões Nunes, C., Vaissade, P. & Roger, L. (1987). Comparaison de deux techniques d'estimation (ninhydrine vs TNBS) de l'azote des acides amines circulants appliquées a I'étude de I'absorption intestinale de solutions d'acides aminés libres et de petits peptides (A comparison of two techniques (ninhydrin vs TNBS) for estimating circulating amino acid nitrogen: application to the study of absorption of solutions of free amino acids or small peptides in the intestine). Reproduction Nutrition Développement 27, 955966.CrossRefGoogle Scholar
Rérat, A., Vaissade, P & Vaugelade, P. (1988c). Quantitative measurement of endogenous amino acid absorption in unanaesthetized pigs. Archives of Animal Nutrition 38, 463479.Google Scholar
Rérat, A. & Vaugelade, P. (1983). Debitmttrie chronique de la veine porte chez le porc. (Chronic portal blood- flow measurement in the pig). Sciences et Techniques des Animaux de Laboratoire 8, 239248.Google Scholar
Rérat, A., Vaugelade, P. & Villiers, P. (1980). A new method for measuring the absorption of nutrients in the pigs: critical examination. In Current Concepts on Digestion and Absorption in Pigs, pp. 177216 Low and, A. G. Partridge, I. G., editors]. Reading: National Institute for Research in Dairying.Google Scholar
Shingleton, W. W., Wells, M. H., Baylin, G. H., Ruffin, J. M., Saunders, A. & Durham, N. C. (1955). The use of radioactive labelled protein and fat in the evaluation of pancreatic disorders. Surgery 38, 134142.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Ames, IA: Iowa State University Press.Google Scholar
Uram|J. A., Friedman, L. & Kline, O. L. (1960). Relation of pancreatic exocrine to nutrition of the rat. American Journal of Physiology 199, 387394.Google Scholar
Waring, J. J. & Bolton, W. (1967). 2-4-6-trinitrobenzene sulfonic acid as a colour reagent for amino acid analysis. In Fifth Colloquium on Amino Acid Analysis. Technicon Monograph no. 2, pp, 3034. Domont, France: Technicon.Google Scholar