Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T12:41:33.788Z Has data issue: false hasContentIssue false

In situ study of the relevance of bacterial adherence to feed particles for the contamination and accuracy of rumen degradability estimates for feeds of vegetable origin

Published online by Cambridge University Press:  08 March 2007

C. A. Rodríguez*
Affiliation:
Departamento de Produccion Animal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
J. González
Affiliation:
Departamento de Produccion Animal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
*
*Corresponding author: Dr C. A. RodríLguez, fax +34 915499763, email carlosalberto.rodriguez@upm.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An in situ study was conducted on four rumen-cannulated wethers to determine (using 15N infusion techniques) the microbial contamination (mg bacterial DM or crude protein (CP)/100mg DM or CP) and the associated error on the effective degradability of fourteen feeds: barley and maize grains, soyabean and sunflower meals, full-fat soyabean, maize gluten feed, soyabean hulls, brewers dried grains, sugarbeet pulp, wheat bran, lucerne and vetch-oat hays, and barley and lentil straws. The DM or CP contamination in residues (M) fitted to single exponential or sigmoid curves. A general model (M=m (1−eft)j) was proposed to match this fit. Asymptotic values (m) varied from 2·84% to 13·3% and from 2·85% to 80·9% for DM and CP, respectively. Uncorrected results underestimated the effective degradability of both DM (P<0·05) and CP (P<0·01). For CP, this underestimation varied from 0·59% to 13·1%, with a higher but unascertainable error for barley straw. Excluding maize grain, the microbial contamination of both DM and CP, and the associated underestimation of the effective degradability of CP, were positively related to the cellulose content of the feed. The error in the effective degradability of CP was also negatively related to the CP content and its apparent effective degradability (R2 0·867). This equation allows easier and more accurate estimates of effective degradability, needed to improve protein-rationing systems.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Akin, DEMicroscopic evaluation of forage digestion by rumen micro-organisms - a review. J Anim Sci (1979) 48, 701710.Google Scholar
Alvir, MR, González, J & Rodríguez, CARelationship between in situ rumen protein degradability and chemical composition of alfalfa hays. Ann Zootech (1999) 48, 447456.Google Scholar
Association of Official Analytical Chemists Official Methods of Analysis. 17th ed Arlington: Association of Official Analytical Chemists (1990)Google Scholar
Beckers, Y, Thewis, A, Maudoux, B & Francois, EStudies on the in situ nitrogen degradability corrected for bacterial contamination of concentrate feeds in steers. J Anim Sci (1995) 73, 220227.CrossRefGoogle ScholarPubMed
Bernard, L, Marvalin, O, Yang, W & Poncet, CColonisation bacterienne de differents types d'aliments incubes in sacco dans le rumen; consequences pour l'estimation de la dégradabilité de l'azote (Bacterial colonization of different type of feed incubated in sacco in the rumen: consequences for the evaluation nitrogen degradability). Repr Nutr Develop (1988) 28, Suppl. 1 105106.CrossRefGoogle Scholar
Cheng, KJ, Stewart, CS, Dinsdale, D & Costerton, JWElectron microscopy of bacteria involved in the digestion of plant cell walls. Anim Feed Sci Technol (1984) 10, 93120.CrossRefGoogle Scholar
Chesson, A & Forsberg, CWPolysaccharide degradation by rumen microorganisms The Rumen Microbial Ecosystem. [Hobson, PN, editor] London: Elsevier Applied Science. (1988)Google Scholar
Chesson, A, Stewart, CS & Wallace, RJInfluence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl Environ Microbiol (1982) 44, 597603.CrossRefGoogle ScholarPubMed
Chesson, A, Stewart, CS & Wallace, RJInfluence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl Environ Microbiol (1982) 44, 597603.CrossRefGoogle ScholarPubMed
France, J & Thornley, JHMMathematical Models in Agriculture.London: Butterworths. (1984)Google Scholar
González, J, Sánchez, L & Alvir, MREstimation of intestinal digestibility of undegraded sunflower meal protein from nylon bag measurements. A mathematical model. Reprod Nutr Dev (1999) 39, 607616.CrossRefGoogle ScholarPubMed
González, J, Ouarti, M, Rodríguez, CA & Alvir, MREffects of considering the rate of comminution of particles and microbial contamination on the accuracy of the in situ studies of feed protein degradability in ruminants. Anim Feed Sci Technol (2006) 125, 8998.Google Scholar
Grenet, E & Barry, PEtude microscopique de la digestion des parois végétales des téguments de soja et de colza dans le rumen. Reprod Nutr Develop (1987) 27, 246248.CrossRefGoogle Scholar
Grenet, E & Demarquilly, C Rappels sur la digestion des fourrages dans le rumen (parois) et ses conséquences (Review on the digestion of feeds in the rumen (cell walls) and its consequences). In Les fourrages secs: récolte, traitment, utilisation, PP.141162 [Demarquilly, C, editor]. Paris: INRA Editions. (1987)Google Scholar
Haj Ayed, M, Gonzalez, J, Caballero, R & Alvir, MNutritive value of on-farm common vetch-oat hays fed to sheep. II. Ruminal degradability. Ann Zootech (2000) 49, 391398.Google Scholar
Harbers, LH, Brazle, FK, Raiten, DJ & Owensby, CEMicrobial degradation of smooth brome and tall fescue observed by scanning electron microscopy. J Anim Sci (1981) 51, 439446.CrossRefGoogle Scholar
Hatfield, RDCell wall polysaccharide interactions and degradability. In Forage Cell Wall Structure and Digestibility, pp. 286313 [Jung, HG, Buxton, DR, Hatfield, RD and Ralph, J editors]. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. (1993)Google Scholar
Kamoun, M, Thewis, A, Couvreur, L & Francois, EEtude de la contamination microbienne et de la dégradabilité ruminale in sacco des matières azotés de 2 variétés de raygrass italien marquées au moyen de 15 N et recoltées à 2 stades végétatifs (Study of the in situ microbial contamination and ruminal degradability of crude protein in two varieties of Italian ray grass labelled with 15N and harvested at two vegetative stages). Ann Zootech (1993) 42, 122123.Google Scholar
McAllister, TA, Bae, HD, Jones, GA & Cheng, KJMicrobial attachment and feed digestion in the rumen. J Anim Sci (1994) 72, 30043018.Google Scholar
McAllister, TA, Rode, LM, Major, DJ, Cheng, KJ & Buchanan-Smith, JGEffect of ruminal microbial colonization on cereal grain digestion. Can J Anim Sci (1990) 70, 571579.Google Scholar
Mathers, JC & Aitchison, EMDirect estimation of the extent of contamination of food residues by microbial matter after incubation within synthetic bags in the rumen. J Agric Sci Camb (1981) 96, 691695.Google Scholar
Merry, RJ & McAllan, ABA comparison of the chemical composition of mixed bacteria harvested from the liquid and solids fractions of rumen digesta. Br J Nutr (1983) 50, 701709.CrossRefGoogle ScholarPubMed
Michalet-Doreau, B & Ould-Bah, MYEstimation of the extent of bacterial contamination in bag residues and its influence on in sacco measurements of forage nitrogen degradation in rumen. In Proceedings of the XVI International Grassland Congress 1989. pp. [Asociation Française pour la Production Fourragére, editor] Versailles: Asociation Française pour la Production Fourragére (1989) 909910Google Scholar
Nocek, JEIn situ and other methods to estimate ruminal protein and energy digestibility: a review. J Dairy Sci (1988) 71, 20512069.Google Scholar
Nocek, JE, Grant, ALCharacterization of in situ nitrogen and iber digestion and bacterial contamination of hay crop forages preserved at different dry matter percentages. J Anim Sci (1987) 64, 552564.CrossRefGoogle Scholar
Ørskov, ER, McDonald, IThe estimation of portein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci, Camb (1979) 92, 499503.CrossRefGoogle Scholar
Ould-Bah, MY, Michalet-Doreau, B, Jamot, J, Contamination bacterienne des résidus alimentaires des sachets incube's dans le rumen: utilisation du ‘Stomacher’ pour la re'duire et consequences sur la mesure de la de'gradabilité ruminale de l'azote (Bacterial contamination of in situ residues of feeds incubated in the rumen: use of the “Stomacher” to reduce it and consequences on the measure of the ruminal nitrogen degradability). Repr Nutr Develop (1988) 28Suppl. 1107108.CrossRefGoogle Scholar
Pereira, JC, Carro, MD, González, J, Alvir, MR, Rodŕiguez, CARumen degradability and intestinal digestibility of brewers dried grains as affected by origin and heat treatment and of barley rootlets. Anim Feed Sci Technol (1998) 74, 107121.Google Scholar
Robertson, JB, Van Soest, PJ The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food pp. 123158 [James, WPT, Theander, O, editors]. New York: Marcel Dekker. (1981)Google Scholar
Rodríguez, CA, González, J, Alvir, MR, Redondo, R, Cajarville, CEffects of feed intake on composition of sheep rumen contents and their microbial population size. Br J Nutr (2003) 89 97103.Google Scholar
Rodríguez, CA, González, J, Alvir, MR, Repetto, JL, Centeno, C, Lamrani, FComposition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by intake level. Br J Nutr (2000) 84, 369376.CrossRefGoogle Scholar
Rooke, JA, Greife, HA, Armstrong, DGThe effect of in sacco rumen incubation of grass silage upon the total and D-amino acid composition of the residual silage dry matter. J Agric Sci Camb (1984) 102, 695702.CrossRefGoogle Scholar
Rooney, LW, Pflugfelder, RLFactors affecting starch digestibility with special emphasis on sorghum and corn. J Anim Sci (1986) 63, 16071623.CrossRefGoogle ScholarPubMed
Valadares Filho, SC, Cohelo da Silva, JF, Santanna, R, Diniz Valadares, RF, Cohelo, EHContaminaçao bacteriana em residuos da incubaçao ruminal de alguns alimentos em sacos de nailon (Bacterial contamination in feed residue after ruminal incubationin nylon bags). Rev Soc Bras Zoot (1992) 21, 467474.Google Scholar
Van Soest, PJNutritional Ecology of the Euminant.IthacaCornell University Press (1994)Google Scholar
Van Soest, PJ, Robertson, JB, Lewis, BAMethods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides inrelation to animal nutrition. J Dairy Sci (1991) 74, 35833597.Google Scholar
Varvikko, TMicrobially corrected amino acid composition of rumen-undegraded feed protein and amino acid degradability in the rumen of feeds enclosed in nylon bags. Br J Nutr (1986) 56, 131140.Google Scholar
Varvikko, T, Lindberg, JEEstimation of microbial nitrogen in nylon-bag residues by feed 15N dilution. Br J Nutr (1985) 54, 473481.Google Scholar
Wanderley, RC, Huber, JT, Wu, Z, Pessarakli, M, Fontes, C JrInfluence of microbial colonization of feed particles on determination of nitrogen degradability by in situ incubation. J Anim Sci (1993) 71, 30733077.CrossRefGoogle ScholarPubMed
Zakraoui, FEffet de la proportion du concentre dans la ration sur la colonisation microbienne des residus d'incubation in sacco et la degradabilite de l'azote. Efficacite de differents traitements de detachement microbien. (Effect of the proportion of concentrates in the ration on the microbial colonization of the residues of incubation in sacco and the degradability of nitrogen. Effectiveness of various treatments of microbial detachment)MSc Thesis SpainAgronomic Mediterranean Institute of Zaragoza. (1996)Google Scholar