Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T17:32:21.423Z Has data issue: false hasContentIssue false

The digestion process of the sugar alcohol isomalt in the intestinal tract of the pig

1. Studies with administration of isomalt in the feed

Published online by Cambridge University Press:  09 March 2007

E. J. Van Weerden
Affiliation:
TNO-Institute of Animal Nutrition and Physiology (ILOB), PO Box 15, 6700 AA Wageningen, The Netherlands
J. Huisman
Affiliation:
TNO-Institute of Animal Nutrition and Physiology (ILOB), PO Box 15, 6700 AA Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a study with twelve pigs of 60–70 kg live weight provided with a re-entrant cannula at the end of the ileum, and twelve intact, non-cannulated pigs, the fate of dietary doses of 100 and 200 g isomalt/kg during gastrointestinal passage was examined. From sugar analyses in ileal chyme it was calculated that 0.43 and 0.30 of the isomalt consumed was digested in the small intestine with the 100 and 200 g/kg doses of isomalt respectively. From findings on ileal energy digestibility it was calculated that, because of a secondary effect of isomalt on the digestion of the basal diet, isomalt digestibility in the small intestine was distinctly lower. In faeces no sugars were found, so faecal digestibility of isomalt was 1.00 for both doses. The bacterial fermentation in the large intestine of the isomalt not digested in the small intestine caused an increase in the faecal excretion of nitrogen and energy. This increased faecal excretion was hardly (nitrogen) or not (energy) compensated by a decreased urinary excretion.

Type
Degestion of Sugar Alcohols
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Association of Official Analytical Chemists (1980). Oficial Methods of Analysis. 13th ed. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Boehringer, (1976). Methods of enzymatic food analysis. Mannheim, Germany: Boehringer.Google Scholar
Close, W. H., Longland, A. C. & Low, A. G. (1989). Energy metabolism studies on pigs fed diets containing sugar-beet pulp. Animal Production 48, 625626.Google Scholar
Close, W. H., Pettigrew, J. E., Sharpe, C. E., Keal, H. D. & Hartland, J. I. (1990). The metabolic effects of feeding diets containing sugar-beet pulp to sows. Animal Production 50, 559560.Google Scholar
Easter, R. A. & Tanksley, T. D. (1973). A technique for re-entrant ileocecal cannulation of swine. Journal of Animal Science 36, 10991103.CrossRefGoogle ScholarPubMed
Food and Agriculture Organization/World Health Organization (1980). Carbohydrates in Human Nutrition, FAO Food and Nutrition Paper. Rome: FAO.Google Scholar
Graham, H. & Åman, P. (1987). The pig as a model in dietary fibre digestion studies. Scandinavian Journal of Gastroenterology 22, Suppl. 129, 5561.CrossRefGoogle Scholar
Grupp, V. & Siebert, G. (1978). Metabolism of hydrogenated palatinose, an equimolar mixture of α-D-glucopyranisido-1,6-sorbitol and α-D-glucopyranisido-1,6-mannitol. Research in Experimental Medicine 173, 261278.CrossRefGoogle ScholarPubMed
Heymann, H. (1991). Isolierung und Charakterisierung von Di- und Oligosaccharidasen aus Dünndarmmucosa (Isolation and characterization of di- and oligosaccharides from small intestine mucosa). Dissertation, University of Hannover.Google Scholar
Jensen, B. B. (1988). Effect of diet composition and Virginiamyoen on microbial activity in the digestive tract of pigs. Proceedings of the 4th International Seminar on Digestive Physiology in the Pig, pp. 392400. Jablonna: Poland Academy of Sciences.Google Scholar
Just, A., Fernandez, J. A. & Jørgensen, H. (1983). The net energy value of diets for growth in pigs in relation to the fermentative processes in the digestive tract and the site of absorption of the nutrients. Livestock Production Science 10, 171186.CrossRefGoogle Scholar
Kirchgessner, M. & Muller, H. L. (1983). PalatinitR Verdaulichkeit, Umsetzbarkeit und Verwertung der Energie im Modellversuch an Sauen (PalatinitR, digestibility, metabolisability and availability of the energy in a model experiment with sows). Zeitschrift für Ernährungswissenschaft 22, 234240.CrossRefGoogle Scholar
Longland, A. C., Low, A. G. & Close, W. H. (1988). Contribution of carbohydrate fermentation to energy balance in pigs. Proceedings of the 4th International Seminar on Digestive Physiology iti the Pig, pp. 108120. Jablonna: Poland Academy of Sciences.Google Scholar
Musch, K., Siebert, G., Schiweck, H. & Steinle, G. (1973). Ernährungsphysiologische Untersuchungen mit Isomaltit an der Ratte (Nutritional/physiological studies with Isomalt in rats). Zeitschrift für Ernährungswissenschaft Suppl. 15, 316.Google Scholar
Nederlands Normalisatie Instituut (1964). Prescription NEN 935/11. The Hague, Netherlands: Nederlands Normalisatie Instituut.Google Scholar
Nilsson, U. & Jägerstad, M. (1987). Hydrolysis of lactitol, maltitol and PalatinitR by human intestinal biopsies. British Journal of Nutrition 58, 199206.CrossRefGoogle Scholar
Nutrition Council (1987). The Energy Value of Sugar Alcohols. The Hague: Voedingsraad.Google Scholar
Schiweck, H. (1980). PalatinitR Herstellung, technologische Eigenschaften und Analytik palatinithaltiger Lebensmittel (PalatinitR, production, technological properties and analytical methods of roodstufs containing Palatinit). Alimenta 19, 516.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1980). Statistical Merhods, 7th ed. Ames, Iowa: The Iowa State University Press.Google Scholar
Staudacher, W. & Kirchgessner, M. (1984). Protein- und Fettansatz sowie Energieverwertung bei Verfütterung von PalatinitR an wachsende Ratten (Protein and fat deposition and energy utilisation when feeding PalatinitR to growing rats). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 52, 272283.CrossRefGoogle Scholar
van Es, A. J. H. (1982). Energy metabolism in pigs. Proceedings of the 9th Symposium on Energy Metabolism. Lillchammer. pp. 17. Norway: European Association for Animal Production.Google Scholar
van Es, A. J. H. (1987). Energy utilization of low digestibility carbohydrates. In Low Digestibility Carbohydrates; Proceedings of the 1986 TNO-CIVO Workshop, pp. 121127 [Leegwater, D. C., Feron, V. J. and Hermus, R. J. J., editors]. Wageningen: Pudoc.Google Scholar
van Weerden, E. J. & Huisman, J. (1993). The digestion process of the sugar alcohol isomalt in the intestinal tract of the pig 2. Studies with administration of isomalt as a sweet. British Journal of Nutrition 69, 467479.CrossRefGoogle ScholarPubMed
Wang, Y. M. & van Eys, J. (1981). Nutritional significance of fructose and sugar alcohols. Annual Review of Nutrition 1, 437475.CrossRefGoogle ScholarPubMed
Zebrowska, T. (1982). Nitrogen digestion in the large intestine. In Digesrive Physiology in the Pig. 2e Seminaire international Jouy-en-Josas-Versailles, France, pp. 225236 [Laplace, J. P., Corring, T. and Rerat, A., editors] Jouy-en-Josas: INRA.Google Scholar
Zinner, P. M., Kirchgessner, M., Ascherl, R. & Erhardt, W. (1985). Zur präcäcalen Absorption von Palatinit beim ausgewachsenen Schwein (Precaecal absorption of Palatinit in adult swine). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 53, 7983.CrossRefGoogle Scholar