Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T20:28:30.598Z Has data issue: false hasContentIssue false

Diet and cancer: assessing the risk

Published online by Cambridge University Press:  09 March 2007

C. I. R. Gill*
Affiliation:
University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
I. R. Rowland
Affiliation:
University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
*
*Corresponding author: Dr C. I. R. Gill, fax +44 (0) 2870 324965, C.Gill@ulst.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Globally, colorectal cancer (CRC) is a leading cause of mortality from malignant disease. Case–control and cohort studies provide strong support for a role of diet in the aetiology of CRC. However to establish causal relationships and to identify more precisely the dietary components involved, intervention studies in human subjects are required. Cancer is an impractical endpoint in terms of numbers, cost, study duration and ethical considerations. Consequently, intermediate biomarkers of the disease are required. This review aims to provide an overview of the intermediate endpoints available for the study of CRC, particularly non-invasive faecal biomarkers. Examples of their use in dietary intervention studies are given.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Agus, C, Ilett, KF, Kadlubar, FF & Minchin, RF (2000) Characterization of an ATP-dependent pathway of activation for the heterocyclic amine carcinogen N-hydroxy-2-amino-3-methylimidazo[4, 5-f] quinoline. Carcinogenesis 21, 12131219.Google ScholarPubMed
Alberts, DS, Einspahr, J, Ritenbaugh, C, Aickin, M, Rees, , McGee, S, Atwood, J, Emerson, S, Mason-Liddil, N, Bettinger, L, Patel, J & Bellapravalu, S, Ramanujam, PS, Phelps, J & Clark, L (1997) The effect of wheat bran fiber and calcium supplementation on rectal mucosal proliferation rates in patients with resected adenomatous colorectal polyps. Cancer Epidemiology, Biomarkers and Prevention 6, 161169.Google ScholarPubMed
Alexandrov, K, Rojas, M, Kadlubar, FF, Lang, NP & Bartsch, H (1996) Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa. Carcinogenesis 17, 20812083.CrossRefGoogle ScholarPubMed
Alldrick, AJ & Lutz, WK (1989) Covalent binding of [2–14C]2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline (MeIQx) to mouse DNA in vivo. Carcinogenesis 10, 14191423.CrossRefGoogle ScholarPubMed
Alles, MS, Hartemink, R, Meyboom, S, Harryvan, JL, Van-Laere, KM, Nagengast, FM & Hautvast, JG (1999) Effect of transgalactooligosaccharides on the composition of the human intestinal microflora and on putative risk markers for colon cancer. American Journal of Clinical Nutrition 69, 980991.CrossRefGoogle ScholarPubMed
American Gastroenterologcal Association (2000) AGA Technical review: Impact of dietary fiber on colon cancer occurence. Gastroenterology 118, 12351257.CrossRefGoogle Scholar
Anderson, JW, Zettwoch, N, Feldman, T, Tietyen-Clark, J, Oeltgen, P & Bishop, CW (1988) Cholesterol-lowering effects of psyllium hydrophilic mucilloid for hypercholesterolemic men. Archives of Internal Medicine 148, 292296.CrossRefGoogle ScholarPubMed
Appelt, LC & Reicks, MM (1997) Soy feeding induces phase II enzymes in rat tissues. Nutrition and Cancer 28, 270275.CrossRefGoogle ScholarPubMed
Badawi, AF, Stern, SJ, Lang, NP & Kadlubar, FF (1996) Cytochrome P-450 and acetyltransferase expression as biomarkers of carcinogen-DNA adduct levels and human cancer susceptibility. Progress in Clinical and Biological Research 395, 109140.Google ScholarPubMed
Baptista, J, Bruce, WR, Gupta, I, Krepinski, JJ, Van Tassell, RL & Wilkins, TD (1985) On the distribution of fecapentaenes, the fecal mutagens, in the human population. Cancer Letters 22, 299.CrossRefGoogle Scholar
Baron, JA, Beach, M, Mandel, JS, van-Stolk, RU, Haile, RW, Sandler, RS, Rothstein, R, Summers, RW, Snover, DC, Beck, GJ, Bond, JH & Greenberg, ER (1999) Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. New England Journal of Medicine 340, 101107.CrossRefGoogle ScholarPubMed
Bear, WL & Teel, RW (2000) Effects of citrus flavonoids on the mutagenicity of heterocyclic amines and on cytochrome P450 1A2 activity. Anticancer Research 20, 36093614.Google ScholarPubMed
Bingham, SA (2000) Diet and colorectal cancer prevention. Biochemical Society Transactions 28, 1216.CrossRefGoogle ScholarPubMed
Blobe, GC, Obeid, LM & Hannun, YA (1994) Regulation of protein kinase C and role in cancer biology. Cancer and Metastasis Reviews 13, 411431.CrossRefGoogle ScholarPubMed
Boland, CR (1996) Roles of the DNA mismatch repair genes in colorectal tumorigenesis. International Journal of Cancer 69, 4749.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Boland, CR, Thibodaeu, SN, Hamilton, SR, Sidransky, D, Eshleman, JR, Burt, RW, Meltzer, SJ, Rodriguez-Bigas, MA, Fodde, R, Ranzani, GN & Srivastavas, (1998) A National Institute workshop in microsatellite instability for cancer detection and famlial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Research 58, 52485257.Google Scholar
Bostick, RM, Fosdick, L, Grandits, GA, Lillemoe, TJ, Wood, JR, Grambsch, P, Louis, TA & Potter, JD (1997) Colorectal epithelial cell proliferative kinetics and risk factors for colon cancer in sporadic adenoma patients. Cancer Epidemiology, Biomarkers and Prevention 6, 10111019.Google ScholarPubMed
Bostick, RM, Fosdick, L, Wood, JR, Grambsch, P, Grandits, GA, Lillemoe, TJ, Louis, TA & Potter, JD (1995) Calcium and colorectal epithelial cell proliferation in sporadic adenoma patients: a randomized, double-blinded, placebo-controlled clinical trial. Journal of the National Cancer Institute 87, 13071315.CrossRefGoogle ScholarPubMed
Boyle, P & Langman, JS (2000) ABC of colorectal cancer – epidemiology. British Medical Journal 321, 805808.CrossRefGoogle ScholarPubMed
Bruce, WR, Giacca, A & Medline, A (2000) Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiology Biomarkers & Prevention 9, 12711279.Google ScholarPubMed
Burns, AJ & Rowland, IR (2000) Anti-carcinogenicity of probiotics and prebiotics. Current Issues in Intestinal Microbiology 1, 1324.Google ScholarPubMed
Challa, A, Rao, DR, Chawan, CB & Shackelford, L (1997) Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis 18, 517521.CrossRefGoogle ScholarPubMed
Chang, WC, Chapkin, RS & Lupton, JR (1997) Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 18, 721730.CrossRefGoogle ScholarPubMed
Chaplin, MF (1998) Bile acids, fibre and colon cancer: the story unfolds. Journal of the Royal Society of Health 118, 5361.CrossRefGoogle ScholarPubMed
Chaplin, MF, Chaudhury, S, Dettmar, PW, Sykes, J, Shaw, AD & Davies, GJ (2000) Effect of ispaghula husk on the faecal output of bile acids in healthy volunteers. Journal of Steroid Biochemistry and Molecular Biology 72, 283292.CrossRefGoogle ScholarPubMed
Chung, DC (2000) The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119, 854865.CrossRefGoogle ScholarPubMed
Clinton, SK (1992) Dietary protein and carcinogenesis. In Nutrition, Toxicity, and Cancer, pp. 455475 [Rowland, I, editor]. Boca Raton, FL: CRC Press.Google Scholar
Clinton, SK, Bostwick, DG, Olson, LM, Mangian, HJ & Visek, WJ (1988) Effects of ammonium acetate and sodium cholate on N-methyl-N′-nitro-N-nitrosoguanidine-induced colon carcinogenesis of rats. Cancer Research 48, 30353039.Google ScholarPubMed
Craven, PA & De Rubertis, FR (1988) Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation by unsaturated fatty acids. Gastroenterology 95, 676685.CrossRefGoogle ScholarPubMed
Cummings, JH, Beatty, ER, Kingman, SM, Bingham, SA & Englyst, HN (1996) Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition 75, 733747.CrossRefGoogle ScholarPubMed
Cummings, JH, Macfarlane, GT & Englyst, HN (2001) Prebiotic digestion and fermentation. American Journal of Clinical Nutrition 73, Suppl., S415S420.CrossRefGoogle ScholarPubMed
de-Kok, T, Van Faassen, A, Glinghammar, B, Pachen, D, Rafter, JJ, Baeten, C, Engels, L & Kleinjans, JCS (1999) Bile acid concentrations, cytotoxicity, and pH of fecal water from patients with colorectal adenomas. Digestive Diseases and Sciences 44, 22182225.CrossRefGoogle ScholarPubMed
de-Kok, TM, van Faassen, A, Bausch-Goldbohm, RA, ten-Hoor, F & Kleinjans, JC (1992) Fecapentaene excretion and fecal mutagenicity in relation to nutrient intake and fecal parameters in humans on omnivorous and vegetarian diets. Cancer Letters 62, 1121.CrossRefGoogle ScholarPubMed
Erdman, SH, Wu, HD, Hixson, LJ, Ahnen, DJ & Gerner, EW (1997) Assessment of mutations in Ki-ras and p53 in colon cancers from azoxymethane-and dimethylhydrazine-treated rats. Molecular Carcinogenesis 19, 137144.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Eriyamremu, GE & Adamson, I (1995) Alterations in rat colon feces exposed to an acute level of deoxycholate and fed on a Nigerian-like diet. Nutrition Research 15, 869880.CrossRefGoogle Scholar
Faivre, J, Bedenne, L, Boutron, MC, Milan, C, Collonges, R & Arveux, P (1989) Epidemiological evidence for distinguishing subsites of colorectal cancer. Journal of Epidemiology and Community Health 43, 356361.CrossRefGoogle ScholarPubMed
Fearon, ER & Vogelstein, B (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759767.CrossRefGoogle ScholarPubMed
Fontana, RJ, Lown, KS, Paine, MF, Fortlage, L, Santella, RM, Felton, JS, Knize, MG, Greenberg, A & Watkins, PB (1999) Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 117, 8998.CrossRefGoogle ScholarPubMed
Gestel, G, Besancon, P & Rouanet, JM (1994) Comparative evaluation of the effects of two different forms of dietary fibre (rice bran vs wheat bran) on rat colonic mucosa and faecal microflora. Annals of Nutrition and Metabolism 38, 249256.CrossRefGoogle ScholarPubMed
Giovannucci, E & Goldin, B (1997) The role of fat, fatty acids, and total energy intake in the etiology of human colon cancer. American Journal of Clinical Nutrition 66, S1564S1571.CrossRefGoogle ScholarPubMed
Giovannucci, E, Stampfer, MJ, Colditz, GA, Rimm, EB, Trichopoulos, D, Rosner, BA, Speizer, FE & Willett, WC (1993) Folate, methionine, and alcohol intake and risk of colorectal adenoma. Journal of the National Cancer Institute 85, 875884.CrossRefGoogle ScholarPubMed
Glinghammar, B, Venturi, M, Rowland, IR & Rafter, JJ (1997) Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water – potential risk factors for colon cancer. American Journal of Clinical Nutrition 66, 12771282.CrossRefGoogle ScholarPubMed
Goodlad, RA, Al-Mukhtar, MY, Ghatei, MA, Bloom, SR & Wright, NA (1983) Cell proliferation, plasma enteroglucagon and plasma gastrin levels in starved and refed rats. Virchows Archives B, Cell Pathology Including Molecular Pathology 43, 5562.CrossRefGoogle ScholarPubMed
Govers, MJ, Lapre, JA, de Vries, HT & Van-der-Meer, R (1993) Dietary soybean protein compared with casein damages colonic epithelium and stimulates colonic epithelial proliferation in rats. Journal of Nutrition 123, 17091713.CrossRefGoogle ScholarPubMed
Grasten, SM, Juntunen, KS, Poutanen, KS, Gylling, HK, Miettinen, TA & Mykkanen, HM (2000) Rye bread improves bowel function and decreases the concentrations of some compounds that are putative colon cancer risk markers in middle-aged women and men. Journal of Nutrition 130, 22152221.CrossRefGoogle ScholarPubMed
Hamada, K, Umemoto, A, Kajikawa, A, Tanaka, M, Seraj, MJ, Nakayama, M, Kubota, A & Monden, Y (1994) Mucosa-specific DNA adducts in human small intestine: a comparison with the colon. Carcinogenesis 15, 26772680.CrossRefGoogle ScholarPubMed
Hambly, RJ, Rumney, CJ, Fletcher, JM, Rijken, PJ & Rowland, IR (1997) Effects of high-and low-risk diets on gut microflora-associated biomarkers of colon cancer in human flora-associated rats. Nutrition and Cancer 27, 250255.CrossRefGoogle ScholarPubMed
Heijnen, ML, van Amelsvoort, JM, Deurenberg, P & Beynen, AC (1998) Limited effect of consumption of uncooked (RS2) or retrograded (RS3) resistant starch on putative risk factors for colon cancer in healthy men. American Journal of Clinical Nutrition 67, 322331.CrossRefGoogle ScholarPubMed
Helsby, NA, Zhu, S, Pearson, AE, Tingle, MD & Ferguson, LR (2000) Antimutagenic effects of wheat bran diet through modification of xenobiotic metabolising enzymes. Mutation Research 454, 7788.CrossRefGoogle ScholarPubMed
Hill, MJ (1975) The role of colon anaerobes in the metabolism of bile acids and steroids and its relation to colon cancer. Cancer 36, Suppl., 23872400.3.0.CO;2-4>CrossRefGoogle Scholar
Hinzman, MJ, Novotny, C, Ullah, A & Shamsuddin, AM (1987) Fecal mutagen fecapentaene-12 damages mammalian colon epithelial DNA. Carcinogenesis 8, 14751479.CrossRefGoogle ScholarPubMed
Hirai, N, Kingston, DG, Van Tassell, RL & Wilkins, TD (1982) Structure elucidation of a potent mutagen from human feces. Journal of the American Chemical Society 104, 6149.CrossRefGoogle Scholar
Hirayama, K & Rafter, J (2000) The role of probiotic bacteria in cancer prevention. Microbes and Infection 2, 681686.CrossRefGoogle ScholarPubMed
Hofmann, AF (1984) Chemistry and enterohepatic circulation of bile acids. Hepatology 4, Suppl., S4S14.CrossRefGoogle ScholarPubMed
Hofmann, AF (1999) The continuing importance of bile acids in liver and intestinal disease. Archives of Internal Medicine 159, 26472658.CrossRefGoogle ScholarPubMed
Hofstad, B & Vatn, M (1997) Growth rate of colon polyps and cancer. Gastrointestinal Endoscopy Clinics of North America 7, 345363.CrossRefGoogle ScholarPubMed
Hofstad, B, Vatn, MH, Andersen, SN, Owen, RW, Larsen, S & Osnes, M (1998) The relationship between faecal bile acid profile with or without supplementation with calcium and antioxidants on recurrence and growth of colorectal polyps. European Journal of Cancer Prevention 7, 287294.CrossRefGoogle ScholarPubMed
Holt, PR, Atillasoy, EO, Gilman, J, Guss, J, Moss, SF, Newmark, H, Fan, K, Yang, K & Lipkin, M (1998) Modulation of abnormal colonic epithelial cell proliferation and differentiation by low-fat dairy foods: a randomized controlled trial. Journal of the American Medical Association 280, 10741079.CrossRefGoogle ScholarPubMed
Holzapfel, WH, Haberer, P, Snel, J, Schillinger, U & Huis-in't-Veld, JH (1998) Overview of gut flora and probiotics. International Journal of Food Microbiology 41, 85101.CrossRefGoogle ScholarPubMed
Hong, MY, Chapkin, RS, Wild, CP, Morris, JS, Wang, N, Carroll, RJ, Turner, ND & Lupton, JR (1999) Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane. Cell Growth and Differentiation 10, 749758.Google ScholarPubMed
Hughes, R (1999) The effects of diet on colonic N-nitrosation and biomarkers of DNA damage. PhD Thesis, University of Cambridge.Google Scholar
Hughes, R, Cross, AJ, Pollock, JR & Bingham, S (2001) Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22, 199202.CrossRefGoogle ScholarPubMed
Hughes, R & Rowland, IR (2001) Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon. Carcinogenesis 22, 4347.CrossRefGoogle ScholarPubMed
Hylla, S, Gostner, A, Dusel, G, Anger, H, Bartram, HP, Christl, SU, Kasper, H & Scheppach, W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. American Journal of Clinical Nutrition 67, 136142.CrossRefGoogle Scholar
International Agency for Research on Cancer (1997) Cancer incidence in five continents. Volume VII. IARC Scientific Publications i–xxxiv, 11240.Google Scholar
International Agency for Research on Cancer (2000) GLOBOCAN 2000:Cancer Incidence, Mortality and Prevalence Worldwide. International Agency for Research on Cancer, France.Google Scholar
Ichikawa, H & Sakata, T (1998) Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is non-additive. Journal of Nutrition 128, 843847.CrossRefGoogle ScholarPubMed
Indian Cancer Society (1985) Cancer Incidence in Greater Bombay, by Religion and Sex 1973–1978. Bombay: The Indian Cancer Society.Google Scholar
Jenab, M & Thompson, LU (1996) The influence of flaxseed and lignans on colon carcinogenesis and beta-glucuronidase activity. Carcinogenesis 6, 13431348.CrossRefGoogle Scholar
Johansen, C, Mellemgaard, A, Skov, T, Kjaergaard, J & Lynge, E (1993) Colorectal cancer in Denmark 1943–1988.. International Journal of Colorectal Disease 8, 4247.CrossRefGoogle ScholarPubMed
Johansson, G, Holmen, A, Persson, L, Hogstedt, B, Wassen, C, Ottova, L & Gustafsson, JA (1998) Long-term effects of a change from a mixed diet to a lacto-vegetarian diet on human urinary and faecal mutagenic activity. Mutagenesis 13, 167171.CrossRefGoogle ScholarPubMed
Kamano, T, Mikami, Y, Kurasawa, T, Tsurumaru, M, Matsumoto, M, Kano, M & Motegi, K (1999) Ratio of primary and secondary bile acids in feces: possible marker for colorectal cancer? Diseases of the Colon and Rectum 42, 668672.CrossRefGoogle ScholarPubMed
Kemppainen, M, Raiha, I & Sourander, L (1997) A marked increase in the incidence of colorectal cancer over two decades in southwest Finland. Journal of Clinical Epidemiology 50, 147151.CrossRefGoogle ScholarPubMed
Kleibeuker, JH, Mulder, NH, Cats, A, Van-der-Meer, R & de Vries, EG (1996a) Calcium and colorectal epithelial cell proliferation. Gut 39, 774775.CrossRefGoogle ScholarPubMed
Kleibeuker, JH, Nagengast, FM & Van-der-Meer, R (1996b) Carcinogenesis in the colon. In Prevention and Early Detection of Colorectal Cancer, pp. 4662 [Young, GP, Rozen, P and Levin, B, editors]. London: WB Saunders Company Ltd.Google Scholar
Knize, MG, Dolbeare, FA, Cunningham, PL & Felton, JS (1995) Mutagenic activity and heterocyclic amine content of the human diet. Princess Takamatsu Symposium 23, 3038.Google ScholarPubMed
Kulldorff, M, McShane, LM, Schatzkin, A, Freedman, LS, Wargovich, MJ, Woods, C, Purewal, M, Burt, RW, Lawson, M, Mateski, DJ, Lanza, E, Corle, DK, O'Brien, B & Moler, J (2000) Measuring cell proliferation in the rectal mucosa. comparing bromodeoxyuridine (BrdU) and proliferating cell nuclear antigen (PCNA) assays. Journal of Clinical Epidemiology 53, 875883.CrossRefGoogle ScholarPubMed
Lampe, JW, Chen, C, Li, S, Prunty, J, Grate, MT, Meehan, DE, Barale, KV, Dightman, DA, Feng, Z & Potter, JD (2000a) Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiology, Biomarkers and Prevention 9, 787793.Google ScholarPubMed
Lampe, JW, King, IB, Li, S, Grate, MT, Barale, KV, Chen, C, Feng, Z & Potter, JD (2000b) Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 21, 11571162.CrossRefGoogle ScholarPubMed
Landi, MT, Sinha, R, Lang, NP & Kadlubar, FF (1999) Chapter 16. Human cytochrome P4501A2. IARC Scientific Publications, 173195.Google Scholar
Lang, NP, Butler, MA, Massengill, J, Lawson, M, Stotts, RC, Hauer-Jensen, M & Kadlubar, FF (1994) Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiology, Biomarkers and Prevention 3, 675682.Google ScholarPubMed
Lapre, JA, de Vries, HT & Van-der-Meer, R (1993) Cytotoxicity of fecal water is dependent on the type of dietary fat and is reduced by supplemental calcium phosphate in rats. Journal of Nutrition 123, 578585.CrossRefGoogle ScholarPubMed
Lin, HC & Visek, WJ (1991) Colon mucosal cell damage by ammonia in rats. Journal of Nutrition 121, 887893.CrossRefGoogle ScholarPubMed
Mac Donald, IA, Bokkenheuser, VD & Winter, J (1993) Degradation of steriods in the human gut. Journal of Lipid Research 24, 675700.CrossRefGoogle Scholar
Mac Lennan, R, Macrae, F, Bain, C, Battistutta, D, Chapuis, P, Gratten, H, Lambert, J, Newland, RC, Ngu, M & Russell, A (1995) Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. The Australian Polyp Prevention Project. Journal of the National Cancer Institute 87, 17601766.CrossRefGoogle Scholar
Macrae, FA, Kilias, D, Selbie, L, Abbott, M, Sharpe, K & Young, GP (1997) Effect of cereal fibre source and processing on rectal epithelial cell proliferation. Gut 41, 239244.CrossRefGoogle ScholarPubMed
Mallett, AK & Rowland, IR (1990) Bacterial enzymes: their role in the formation of mutagens and carcinogens in the intestine. Digestive Diseases 8, 7179.CrossRefGoogle ScholarPubMed
Marchetti, MC, Migliorati, G, Moraca, R, Riccardi, C, Nicoletti, I, Fabiani, R, Mastrandrea, V & Morozzi, G (1997) Possible mechanisms involved in apoptosis of colon tumor cell lines induced by deoxycholic acid, short-chain fatty acids, and their mixtures. Nutrition and Cancer 28, 7480.CrossRefGoogle ScholarPubMed
Massey, RC, Key, PE, Mallett, AK & Rowland, IR (1988) An investigation of the endogenous formation of apparent total N-nitroso compounds in conventional microflora and germ free rats. Food Chemistry and Toxicology 26, 595600.CrossRefGoogle ScholarPubMed
Maziere, S, Meflah, K, Tavan, E, Champ, M, Narbonne, JF & Cassand, P (1998) Effect of resistant starch and/or fat-soluble vitamins A and E on the initiation stage of aberrant crypts in rat colon. Nutrition and Cancer 31, 168177.CrossRefGoogle ScholarPubMed
McKeown-Eyssen, GE, Bright See, E, Bruce, WR, Jazmaji, V, Cohen, LB, Pappas, SC & Saibil, FG (1994) A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. Toronto Polyp Prevention Group. Journal of Clinical Epidemiology 47, 525536.CrossRefGoogle ScholarPubMed
McShane, LM, Kulldorff, M, Wargovich, MJ, Woods, C, Purewal, M, Freedman, LS, Corle, DK, Burt, RW, Mateski, DJ, Lawson, M, Lanza, E, O'Brien, B, Lake, W, Moler, J & Schatzkin, A (1998) An evaluation of rectal mucosal proliferation measure variability sources in the polyp prevention trial: can we detect informative differences among individuals' proliferation measures amid the noise? Cancer Epidemiology, Biomarkers and Prevention 7, 605612.Google ScholarPubMed
Melendez-Colon, VJ, Luch, A, Seidel, A & Baird, WM (1999) Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogenesis 20, 18851891.CrossRefGoogle ScholarPubMed
Mills, SJ, Mathers, JC, Chapman, PD, Burn, J & Gunn, A (2001) Colonic crypt cell proliferation state assessed by whole crypt microdissection in sporadic neoplasia and familial adenomatous polyposis. Gut 48, 4146.CrossRefGoogle ScholarPubMed
Morotomi, M, Guillem, JG, Lo Gerfo, P & Weinstein, IB (1990) Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora. Cancer Research 50, 35953599.Google ScholarPubMed
Nagao, M & Sugimura, T (1993) Carcinogenic factors in food with relevance to colon cancer development. Mutation Research 290, 4351.CrossRefGoogle ScholarPubMed
Nagengast, FM, Grubben, MJAL & van Munster, IP (1995) Role of bile acids in colorectal carcinogenesis. European Journal of Cancer 31a, 10671070.CrossRefGoogle ScholarPubMed
Nair, PP, Davis, KE, Shami, S & Lagerholm, S (2000) The induction of SOS function in Escherichia coli K-12/PQ37 by 4-nitroquinoline oxide (4-NQO) and fecapentaenes-12 and -14 is bile salt sensitive: implications for colon carcinogenesis. Mutation Research 447, 179185.CrossRefGoogle ScholarPubMed
Nalini, N, Sabitha, K, Viswanathan, P & Menon, VP (1998) Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. Journal of Ethnopharmacology 62, 1524.CrossRefGoogle ScholarPubMed
Narahara, H, Tatsuta, M, Iishi, H, Baba, M, Uedo, N, Sakai, N, Yano, H & Ishiguro, S (2000) K-ras point mutation is associated with enhancement by deoxycholic acid of colon carcinogenesis induced by azoxymethane, but not with its attenuation by all-trans-retinoic acid. International Journal of Cancer 88, 157161.3.0.CO;2-B>CrossRefGoogle Scholar
Nijhoff, WA, Grubben, MJ, Nagengast, FM, Jansen, JB, Verhagen, H, van Poppel, G & Peters, WH (1995) Effects of consumption of Brussels sprouts on intestinal and lymphocytic glutathione S-transferases in humans. Carcinogenesis 16, 21252128.CrossRefGoogle ScholarPubMed
Norat, T & Riboli, E (2001) Meat consumption and colorectal cancer: A review of epidemiologic evidence. Nutrition Reviews 59, 3747.CrossRefGoogle ScholarPubMed
O'Brian, CA & Ward, NE (1989) Biology of the protein kinase C family. Cancer and Metastasis Reviews 8, 199214.CrossRefGoogle ScholarPubMed
O'Brien, MJ, Winawer, SJ, Zauber, AG, Gottlieb, LS, Sternberg, SS, Diaz, B, Dickersin, GR, Ewing, S, Geller, S & Kasimian, D (1990) The National Polyp Study. Patient and polyp characteristics associated with high-grade dysplasia in colorectal adenomas. Gastroenterology 98, 371379.CrossRefGoogle ScholarPubMed
Ochsenkuhn, T, Bayerdorffer, E, Meining, A, Schinkel, M, Thiede, C, Nussler, V, Sackmann, M, Hatz, R, Neubauer, A & Paumgartner, G (1999) Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer 85, 16641669.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
O'Neill, IK, Loktionov, A, Manson, MM, Ball, H, Bandaletova, T & Bingham, SA (1997) Comparison of metabolic effects of vegetables and teas with colorectal proliferation and with tumour development in DMH-treated F344 rats. Cancer Letters 114, 287291.CrossRefGoogle ScholarPubMed
Osswald, K, Becker, TW, Grimm, M, Jahreis, G & Pool-Zobel, BL (2000) Inter-and intra-individual variation of faecal water – genotoxicity in human colon cells. Mutation Research 472, 5970.CrossRefGoogle ScholarPubMed
Otchy, DP, Ransohoff, DF, Wolff, BG, Weaver, A, Ilstrup, D, Carlson, H & Rademacher, D (1996) Metachronous colon cancer in persons who have had a large adenomatous polyp. American Journal of Gastroenterology 91, 448454.Google ScholarPubMed
Owen, DA (1996) Flat adenoma, flat carcinoma, and de novo carcinoma of the colon. Cancer 77, 36.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Payne, CM, Bernstein, H, Bernstein, C & Garewal, H (1995) Role of apoptosis in biology and pathology: resistance to apoptosis in colon carcinogenesis. Ultrastructural Pathology 19, 221248.CrossRefGoogle ScholarPubMed
Pfohl-Leszkowicz, A, Grosse, Y, Carriere, V, Cugnenc, PH, Berger, A, Carnot, F, Beaune, P & de-Waziers, I (1995) High levels of DNA adducts in human colon are associated with colorectal cancer. Cancer Research 55, 56115616.Google ScholarPubMed
Phillips, J, Muir, JG, Birkett, A, Lu, ZX, Jones, GP, O'Dea, K & Young, GP (1995) Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. American Journal of Clinical Nutrition 62, 121130.CrossRefGoogle ScholarPubMed
Ponz de Leon, M & Percesepe, A (2000) Pathogenesis of colorectal cancer. Digestive and Liver Disease 32, 807821.CrossRefGoogle ScholarPubMed
Ponz de Leon, M & Roncucci, L (2000) The cause of colorectal cancer. Digestive and Liver Disease 32, 426439.CrossRefGoogle ScholarPubMed
Pool-Zobel, BL, Bub, A, Liegibel, UM, Treptow-van-Lishaut, S & Rechkemmer, G (1998) Mechanisms by which vegetable consumption reduces genetic damage in humans. Cancer Epidemiology, Biomarkers and Prevention 7, 891899.Google ScholarPubMed
Pool-Zobel, BL, Bub, A, Muller, H, Wollowski, I & Rechkemmer, G (1997) Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis 18, 18471850.CrossRefGoogle ScholarPubMed
Pool-Zobel, BL & Leucht, U (1997) Induction of DNA damage by risk factors of colon cancer in human colon cells derived from biopsies. Mutation Research 375, 105115.CrossRefGoogle ScholarPubMed
Pool-Zobel, BL, Neudecker, C, Domizlaff, I, Ji, S, Schillinger, U, Rumney, C, Moretti, M, Vilarini, I, Scassellati-Sforzolini, R & Rowland, I (1996) Lactobacillus-and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutrition and Cancer 26, 365380.CrossRefGoogle ScholarPubMed
Potter, JD (1999) Colorectal cancer: Molecules and populations. Journal of the National Cancer Institute 91, 916932.CrossRefGoogle ScholarPubMed
Potter, JD, Slattery, ML, Bostick, RM & Gapstur, SM (1993) Colon cancer: a review of the epidemiology. Epidemiologic Reviews 15, 499545.CrossRefGoogle ScholarPubMed
Povey, AC, Hall, CN, Badawi, AF, Cooper, DP & O'Connor, PJ (2000) Elevated levels of the pro-carcinogenic adduct, O(6)-methylguanine, in normal DNA from the cancer prone regions of the large bowel. Gut 47, 362365.CrossRefGoogle ScholarPubMed
Powolny, A, Xu, J & Loo, G (2001) Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. International Journal of Biochemistry and Cell Biology 33, 193203.CrossRefGoogle ScholarPubMed
Radley, S, Pongracz, J, Lord, J & Neoptolemos, JP (1996) Bile acids and colorectal cancer. Cancer Topics 10, 27.Google Scholar
Rafter, JJ, Child, P, Anderson, AM, Alder, R, Eng, V & Bruce, WR (1987) Cellular toxicity of fecal water depends on diet. American Journal of Clinical Nutrition 45, 559563.CrossRefGoogle ScholarPubMed
Rao, CV, Chou, D, Simi, B, Ku, H & Reddy, BS (1998) Prevention of colonic aberrant crypt foci and modulation of large bowel microbial activity by dietary coffee fiber, inulin and pectin. Carcinogenesis 19, 18151819.CrossRefGoogle ScholarPubMed
Reddy, BS (1998) Prevention of colon cancer by pre-and probiotics: evidence from laboratory studies. British Journal of Nutrition 80, S219S223.CrossRefGoogle ScholarPubMed
Reddy, BS, Engle, A, Simi, B & Goldman, M (1992) Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology 102, 14751482.CrossRefGoogle ScholarPubMed
Reddy, BS, Mangat, S, Weisburger, JH & Wynder, EL (1977) Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterial beta-glucuronidase activity in F344 rats. Cancer Research 37, 35333536.Google ScholarPubMed
Reddy, BS, Weisburger, JH & Wynder, EL (1974) Fecal bacterial beta-glucuronidase: control by diet. Science 183, 416417.CrossRefGoogle ScholarPubMed
Reinacher-Schick, A, Seidensticker, F, Petrasch, S, Reiser, M, Philippou, S, Theegarten, D, Freitag, G & Schmiegel, W (2000) Mesalazine changes apoptosis and proliferation in normal mucosa of patients with sporadic polyps of the large bowel. Endoscopy 32, 245254.CrossRefGoogle ScholarPubMed
Rieger, MA, Parlesak, A, Pool-Zobel, BL, Rechkemmer, G & Bode, C (1999) A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of faecal water. Carcinogenesis 20, 23112316.CrossRefGoogle ScholarPubMed
Rowland, IR (1988) Factors affecting metabolic activity of the intestinal microflora. Drug Metabolism Reviews 19, 243261.CrossRefGoogle ScholarPubMed
Rowland, IR, Granli, T, Bockman, OC, Key, PE & Massey, RC (1991) Endogenous N-nitrosation in man assessed by measurement of apparent total N-nitroso compounds in faeces. Carcinogenesis 12, 13951401.CrossRefGoogle ScholarPubMed
Rowland, IR, Mallett, AK & Wise, A (1985) The effect of diet on the mammalian gut flora and its metabolic activities. Critical Reviews in Toxicology 16, 31103.CrossRefGoogle ScholarPubMed
Rowland, IR, Rumney, CJ, Coutts, JT & Lievense, LC (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19, 281285.CrossRefGoogle ScholarPubMed
Rowland, IR & Tanaka, R (1993) The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. Journal of Applied Bacteriology 74, 667674.CrossRefGoogle ScholarPubMed
Rumney, CJ, Rowland, IR, Coutts, TM, Randerath, K, Reddy, R, Shah, AB, Ellul, A & O'Neill, IK (1993a) Effects of risk-associated human dietary macrocomponents on processes related to carcinogenesis in human-flora-associated (HFA) rats. Carcinogenesis 14, 7984.CrossRefGoogle ScholarPubMed
Rumney, CJ, Rowland, IR & O'Neill, IK (1993b) Conversion of IQ to 7-OHIQ by gut microflora. Nutrition and Cancer 19, 6776.CrossRefGoogle ScholarPubMed
Sant, M, Capocaccia, R, Verdecchia, A, Gatta, G, Micheli, A, Mariotto, A, Hakulinen, T & Berrino, F (1995) Comparisons of colon-cancer survival among European countries: The Eurocare Study. International Journal of Cancer 63, 4348.CrossRefGoogle ScholarPubMed
Schatzkin, A, Lanza, E, Corle, D, Lance, P, Iber, F, Caan, B, Shike, M, Weissfeld, J, Burt, R, Cooper, MR, Kikendall, JW & Cahill, J (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. New England Journal of Medicine 342, 11491155.CrossRefGoogle ScholarPubMed
Schiffman, MH, Van-Tassell, RL, Robinson, A, Smith, L, Daniel, J, Hoover, RN, Weil, R, Rosenthal, J, Nair, PP & Schwartz, S (1989) Case–control study of colorectal cancer and fecapentaene excretion. Cancer Research 49, 13221326.Google ScholarPubMed
Schmid, K, Nair, J, Winde, G, Velic, I & Bartsch, H (2000) Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. International Journal of Cancer 87, 14.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Serraino, M & Thompson, LU (1992) Flaxseed supplementation and early markers of colon carcinogenesis. Cancer Letters 63, 159165.CrossRefGoogle ScholarPubMed
Sesink, AL, Termont, DS, Kleibeuker, JH & Van-der-Meer, R (2000) Red meat and colon cancer: dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium. Carcinogenesis 21, 19091915.CrossRefGoogle Scholar
Sesink, ALA, Termont, D, Kleibeuker, JH & Van der Meer, R (1999) Red meat and colon cancer: The cytotoxic and hyperproliferative effects of dietary heme. Cancer Research 59, 57045709.Google ScholarPubMed
Shamsuddin, AM, Ullah, A, Baten, A & Hale, E (1991) Stability of fecapentaene-12 and its carcinogenicity in F-344 rats. Carcinogenesis 12, 601607.CrossRefGoogle ScholarPubMed
Shih, H, Pickwell, GV & Quattrochi, LC (2000) Differential effects of flavonoid compounds on tumor promoter-induced activation of the human CYP1A2 enhancer. Archives of Biochemistry and Biophysics 373, 287294.CrossRefGoogle ScholarPubMed
Silvester, KR, Bingham, SA, Pollock, JRA, Cummings, JH & O'Neill, IK (1997) Effect of meat and resistant starch on fecal extraction of apparent N-nitroso compounds and ammonia from the human large bowel. Nutrition and Cancer 29, 1323.CrossRefGoogle Scholar
Silvi, S, Rumney, CJ, Cresci, A & Rowland, IR (1999) Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. Journal of Applied Microbiology 86, 521530.CrossRefGoogle ScholarPubMed
Simons, BD, Morrison, AS, Lev, R & Verhoek-Oftedahl, W (1992) Relationship of polyps to cancer of the large intestine. Journal of the National Cancer Institute 84, 962966.CrossRefGoogle ScholarPubMed
Singh, J, Hamid, R & Reddy, BS (1997a) Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer. Cancer Research 57, 253258.Google ScholarPubMed
Singh, J, Rivenson, A, Tomita, M, Shimamura, S, Ishibashi, N & Reddy, BS (1997b) Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18, 833841.CrossRefGoogle ScholarPubMed
Sinha, R, Kulldorff, M, Chow, WH, Denobile, J & Rothman, N (2001) Dietary intake of heterocyclic amines, meat-derived mutagenic activity, and risk of colorectal adenomas. Cancer Epidemiology Biomarkers & Prevention 10, 559562.Google ScholarPubMed
Slattery, ML, Potter, JD, Coates, A, Ma, KN, Berry, TD, Duncan, DM & Caan, BJ (1997) Plant foods and colon cancer: an assessment of specific foods and their related nutrients (United States). Cancer Causes and Control 8, 575590.CrossRefGoogle ScholarPubMed
Sousa, RL & Marletta, MA (1985) Inhibition of cytochrome P-450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. Archives of Biochemistry and Biophysics 240, 345357.CrossRefGoogle ScholarPubMed
Souza, RF (2001) Review article: a molecular rationale for the how, when and why of colorectal cancer screening. Alimentary Pharmacology & Therapeutics 15, 451462.CrossRefGoogle ScholarPubMed
Steinbach, G, Morotomi, M, Nomoto, K, Lupton, J, Weinstein, IB & Holt, PR (1994) Calcium reduces the increased fecal 1,2-sn-diacylglycerol content in intestinal bypass patients: a possible mechanism for altering colonic hyperproliferation. Cancer Research 54, 12161219.Google ScholarPubMed
Stocks, P (1957) Cancer incidence in North Wales and Liverpool region in relation to habit and environment. British Imperial Cancer Campaign, 35th Annual report 1, 27.Google Scholar
St-Onge, MP (2000) Consumption of fermented and non fermented dairy products: effects on cholesterol concentrations and metabolism. American Journal of Clinical Nutrition 71, 674681.CrossRefGoogle ScholarPubMed
Su, L (2001) Nutritional status of folate and colon cancer risk; evidence from NHANES I epidemiologic follow-up study. Annals of Epidemiology 11, 6572.CrossRefGoogle ScholarPubMed
Suaeyun, R, Kinouchi, T, Arimochi, H, Vinitketkumnuen, U & Ohnishi, Y (1997) Inhibitory effects of lemon grass (Cymbopogon citratus Stapf) on formation of azoxymethane-induced DNA adducts and aberrant crypt foci in the rat colon. Carcinogenesis 18, 949955.CrossRefGoogle ScholarPubMed
Szarka, CE, Pfeiffer, GR, Hum, ST, Everley, LC, Balshem, AM, Moore, DF, Litwin, S, Goosenberg, EB, Frucht, H & Engstrom, PF (1995) Glutathione S-transferase activity and glutathione S-transferase mu expression in subjects with risk for colorectal cancer. Cancer Research 55, 27892793.Google ScholarPubMed
Takada, H, Hirooka, T, Hiramatsu, Y & Yamamoto, M (1982) Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Research 42, 331334.Google ScholarPubMed
Thompson, MH, Owen, RW, Hill, MJ & Cummings, JH (1985) Factors affecting faecal bile acid concentrations: effect of fat and fibre. Biochemical Society Transactions 13, 392.CrossRefGoogle Scholar
Treptow van Lishaut, S, Rechkemmer, G, Rowland, I, Dolara, P & Pool-Zobel, BL (1999) The carbohydrate crystalean and colonic microflora modulate expression of glutathione S-transferase subunits in colon of rats. European Journal of Nutrition 38, 7683.CrossRefGoogle ScholarPubMed
Van der Meer, R, Lapre, JA, Govers, MJ & Kleibeuker, JH (1997) Mechanisms of the intestinal effects of dietary fats and milk products on colon carcinogenesis. Cancer Letters 114, 7583.CrossRefGoogle ScholarPubMed
Van der Meer, R, Termont, DS & de Vries, HT (1991) Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids. American Journal of Physiology 260, G142G147.Google ScholarPubMed
Van Gorkom, BA, Karrenbeld, A, van der Sluis, T, Koudstaal, J, de Vries, EG & Kleibeuker, JH (2000) Influence of a highly purified senna extract on colonic epithelium. Digestion 61, 113120.CrossRefGoogle ScholarPubMed
Van Munster, IP, Tangerman, A & Nagengast, FM (1994) Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Digestive Diseases and Sciences 39, 834842.CrossRefGoogle ScholarPubMed
Van Tassell, RL, Kingston, DG & Wilkins, TD (1990) Metabolism of dietary genotoxins by the human colonic microflora; the fecapentaenes and heterocyclic amines. Mutation Research 238, 209221.CrossRefGoogle ScholarPubMed
Van Tassell, RL, Mac Donald, DK & Wilkins, TD (1982a) Production of a fecal mutagen by Bacteroides spp. Infection Immunology 37, 975.CrossRefGoogle Scholar
Van Tassell, RL, Mac Donald, DK & Wilkins, TD (1982b) Stimulation of mutagen production in human feces by bile and bile acids. Mutation Research 103, 233239.Google ScholarPubMed
Vaughan, DJ, Furrer, R, Baptista, J & Krepinsky, JJ (1987) The effect of fecapentaenes on nuclear aberrations in murine colonic epithelial cells. Cancer Letters 37, 199203.CrossRefGoogle ScholarPubMed
Venitt, S, Bosworth, D & Alldrick, AJ (1986) Pilot study of the effect of diet on the mutagenicity of human faeces. Mutagenesis 1, 353358.CrossRefGoogle ScholarPubMed
Venturi, M, Hambly, RJ, Glinghammar, B, Rafter, JJ & Rowland, IR (1997) Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18, 23532359.CrossRefGoogle ScholarPubMed
Villalon, L, Tuchweber, B & Yousef, IM (1992) Low protein diets potentiate lithocholic acid-induced cholestasis in rats. Journal of Nutrition 122, 15871596.CrossRefGoogle ScholarPubMed
Visek, WJ (1978) Diet and cell growth modulation by ammonia. American Journal of Clinical Nutrition 31, S216S220.CrossRefGoogle ScholarPubMed
Vogelstein, B, Fearon, ER, Hamilton, SR, Kern, SE, Preisinger, AC, Leppert, M, Nakamura, Y, White, R, Smits, AM & Bos, JL (1988) Genetic alterations during colorectal-tumor development. New England Journal of Medicine 319, 525532.CrossRefGoogle ScholarPubMed
Ward, JM, Anjo, T, Ohannesian, L, Keefer, LK, Devor, DE, Donovan, PJ, Smith, GT, Henneman, JR, Streeter, AJ & Konishi, N (1988) Inactivity of fecapentaene-12 as a rodent carcinogen or tumor initiator. Cancer Letters 42, 4959.CrossRefGoogle ScholarPubMed
World Cancer Research Fund (1997) Diet, Nutrition and the Prevention of Cancer: A Global Perspective. Washington, DC: World Cancer Research Fund/American Institute.Google Scholar
Wehrmann, K & Fruhmorgen, P (2000) [Removing adenomas reduces colon carcinoma risk up to 90 %. Effective cancer prevention with the endoscope]. MMW Fortsch Med 142, 2629.Google ScholarPubMed
Weisburger, JH, Jones, RC, Wang, CX, Backlund, JY, Williams, GM, Kingston, DG, Van-Tassell, RL, Keyes, RF, Wilkins, TD & de Wit, PP (1990) Carcinogenicity tests of fecapentaene-12 in mice and rats. Cancer Letters 49, 8998.CrossRefGoogle ScholarPubMed
Wilkins, TD, Lederman, M, Van Tassell, RL, Kingston, DG & Henion, J (1980) Characterization of a mutagenic bacterial product in human feces. American Journal of Clinical Nutrition 33, 25132520.CrossRefGoogle ScholarPubMed
Wilson, RG, Smith, AN & Bird, CC (1990) Immunohistochemical detection of abnormal cell proliferation in colonic mucosa of subjects with polyps. Journal of Clinical Pathology 43, 744747.CrossRefGoogle ScholarPubMed
Wollowski, I, Ji, ST, Bakalinsky, AT, Neudecker, C & Pool-Zobel, BL (1999) Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats. Journal of Nutrition 129, 7782.CrossRefGoogle ScholarPubMed
Yanagihara, K, Ito, A, Toge, T & Numoto, M (1993) Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Research 53, 58155821.Google ScholarPubMed
Zarkovic, M, Qin, X, Nakatsuru, Y, Oda, H, Nakamura, T, Shamsuddin, AM & Ishikawa, T (1993) Tumor promotion by fecapentaene-12 in a rat colon carcinogenesis model. Carcinogenesis 14, 12611264.CrossRefGoogle Scholar
Zock, PL (2001) Dietary fats and cancer. Current Opinion in Lipidology 12, 510.CrossRefGoogle ScholarPubMed