Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:44:52.078Z Has data issue: false hasContentIssue false

Counteracting the negative effects of rapeseed and rapeseed press cake in pig diets*

Published online by Cambridge University Press:  09 March 2007

Friedrich Schöne
Affiliation:
Agricultural Institution of Thuringia (Jena), Department of Nutrition and the Market, D-07751 Jena-Remderoda, Germany
Bernd Rudolph
Affiliation:
Agricultural Institution of Thuringia (Jena), Department of Nutrition and the Market, D-07751 Jena-Remderoda, Germany
Ulrich Kirchheim
Affiliation:
Agricultural Institution of Thuringia (Jena), Department of Nutrition and the Market, D-07751 Jena-Remderoda, Germany
Günter Knapp
Affiliation:
Institute of Analytical Chemistry, Micro- and Radiochemistry, Technical University of Graz, A-8010 Graz, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rapeseed and rapeseed press cake were tested in four long-term experiments with a total of ninety-eight pigs. Rapeseed contained 20 and rapeseed press cake 19 mmol glucosinolates/kg DM. The proportion of the tested rapeseed products in feed amounted to 0 (control), 50, 100 and 150 g/kg diet. Moist-heat-treated rapeseed and rapeseed press cake with an extremely low glucosinolate content were also given at 150 g/kg diet. Each dietary rapeseed product level was given with 125 or 250 μg supplementary I/kg diet. Reduced feed intake and growth retardation were found in groups receiving 150 g rapeseed products/kg diet; in the case of rapeseed the impairments were significant. Rapeseed products ≥ 100 g/kg diet increased the thyroid weight and decreased the serum thyroxine (T4) concentration. Higher I dosage brought the serum T4 concentration to the level of the control group and retarded thyroid enlargement. Intake of rapeseed products lowered the I content of the thyroid; however, there was no significant difference between groups given 0·9 mmol glucosinolates/ kg diet and those receiving three times as much. Degrading glucosinolates by moisture and heat prevented feed intake depression and growth retardation. In the case of treated rapeseed the decreased serum T4 concentration and increased thyroid weight persisted, indicating formation of some antithyroid compounds due to myrosinase (EC 3.2.3.1) activation. A maximal glucosinolate content of 2 mmol/kg diet and additional I application are a prerequisite for using rapeseed products in pig feeding.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Bell, J. M. (1984) Nutrients and toxicants in rapeseed meal: a review. Journal of Animal Science 58, 9961010.CrossRefGoogle ScholarPubMed
Bille, N., Eggum, B. O., Jacobson, I., Olsen, O. & Sørensen, H. (1983) Antinutritional and toxic effects in rats of individual glucosinolates (+ myrosinases) added to a standard diet. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 49, 195210.CrossRefGoogle ScholarPubMed
Bourdon, D. & Aumaître, A. (1990). Low glucosinolate rapeseeds and rapeseed meals: effect of technological treatments on chemical composition, digestible energy content and feeding value for growing pigs. Animal Feed Science and Technology, 30, 175191.CrossRefGoogle Scholar
Campbell, L. D. & McDonald, B. E. (1991). Summary of presentations on nutrition. In Rapeseed in a Changing World. Proceedings of the 8th International Rapeseed Congress pp. 19231930 ]McGregor, D. I. editor[. Saskatoon, Canada: University of Saskatchewan.Google Scholar
Deutsche Landwirtschaftsgesellschaft (1991) DLG-Futterwerttabellen Schweine. (DLG Feed Tables, Pigs) 6th ed. Frankfurt: DLG Verlag.Google Scholar
Diedrich, M. & Kujawa, M. (1987). Degradation of progoitrin and its breakdown product VOT by microorganism of intestine of rats in vitro. In Proceedings of the 7th International Rapeseed Congress pp. 17101716 ]Krzymanski, J. editor[. Poznan, Poland: Plant Breeding and Acclimatization Institute.Google Scholar
Dietz, H. M., Panigrahi, S. & Harris, R. V. (1991) Toxicity of hydrolysis products from 3-butenyl glucosinolate in rats. Journal of Agricultural and Food Chemistry 39, 311315.CrossRefGoogle Scholar
European Community (1990) Oilseeds – determination of glucosinolates – high performance liquid chromatography. Official Journal of the European Commission. L170, 2734.Google Scholar
Fenwick, G. R. (1984) Rapeseed as an animal feedstuff – the problems and analysis of glucosinolates. Journal of the Association of Public Analysts 22, 117130.Google Scholar
Fenwick, G. R., Griffiths, N. M. & Heaney, R. K. (1983) Bitterness in brussels sprouts (Brassica oleracea L. var. gemmifera): the role of glucosinolates and their breakdown products. Journal of the Science of Food and Agriculture 34, 7380.CrossRefGoogle Scholar
Groppel, B. (1986). Jodmangelerscheinungen, Jodversorgung und Jodstatus des Wiederkäuers (Rind, Schaf, Ziege) (Iodine deficiency symptoms, iodine supply and iodine status of ruminants (cattle, sheep, goats)). Thesis B, University Leipzig, Germany.Google Scholar
Gstrein, H., Maichin, B., Eustacchio, P. & Knapp, G. (1979) Eine mechanisierte katalytische Meβtechnik zur störungsfreien Bestimmung von Jodspuren in anorganischen und organischen Matrices (A mechanized catalytic detection principle for the accurate determination of trace iodine in inorganic and organic matrices). Mikrochimica Acta I, 291302.CrossRefGoogle Scholar
Ingram, D. L. & Evans, S. E. (1980) Dependence of thyroxine utilization rate on dietary composition. British Journal of Nutrition 43, 525531.Google Scholar
Keith, M. O. & Bell, J. M. (1991) Composition and digestibility of canola press cake as a feedstuff for use in swine diets. Canadian Journal of Animal Science 71, 879885.CrossRefGoogle Scholar
Kohler, H., Taurog, A. & Dunford, H. B. (1988) Spectral studies with lactoperoxidase and thyroid peroxidase: interconversions between native enzyme, Compound II, and Compound III. Archives of Biochemistry and Biophysics 264, 438439.CrossRefGoogle ScholarPubMed
Lange, R., Baumgrab, R., Diedrich, M., Henschel, K.-P. & Kujawa, M. (1992) Glucosinolate in der Ernährung – Pro und Contra einer Naturstoffklasse. Teil II: Abbau und Stoffwechsel (Glucosinolates in nutrition – the pros and cons of a natural substance class. Part II: Degradation and metabolism). Ernährungsumschau 39, 292296.Google Scholar
Lange, R., Petrzika, M. & Linow, F. (1986) Zur Kenntnis der Schwefelverbindungen in Raps- (Brassica napus) Varietäten und Verarbeitungsprodukten. 2. Mitt. Enzymatische Spaltung von Glucosinolaten, Isolierung und gaschromatographisch-massenspektrometrische Identifizierung der entstehenden Aglucone (Recognition of sulfur compounts in rapeseed (Brassica napus) varieties and products of processing. 2: Enzymic cleavage of glucosinolates, isolation and gas chromatographic mass spectrometric identification of arising aglucones). Die Nahrung 30, 10391042.Google Scholar
Langer, P. & Štole, V. (1965) Goitrogenic activity of allylisothiocyanate – a widespread natural mustard oil. Endocrinology 76, 151155.CrossRefGoogle ScholarPubMed
Lüdke, H. & Schöne, F. (1988) Copper and iodine in pig diets with high glucosinolate rapeseed meal. I. Performance and thyroid hormone status of growing pigs fed on a diet with rapeseed meal treated with copper sulphate solution or untreated and supplements of iodine, copper or a quinoxaline derivative. Animal Feed Science and Technology 22, 3343.Google Scholar
Lüdke, H. & Schöne, F. (1994). Prüfung von Rapskuchen im Verdauungsversuch mit Schweinen (Testing of rapeseed cake in a digestibility experiment with pigs). In Alternativen in der Flächennutzung, der Erzeugung und Verwertung Landwirtschaftlicher Produkte. Proceedings of the 106th Kongress des Verbandes der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten (VDLUFA) pp. 963966 ]Zarges, H. editor[. Darmstadt, Germany: VDLUFA Verlag.Google Scholar
McKinnon, P. J. & Bowland, J. P. (1979) Effects of feeding low and high glucosinolate rapeseed meals and soybean meal on thyroid function of young pigs. Canadian Journal of Animal Science 59, 589596.Google Scholar
Maheshwari, P. N., Stanley, D. W., Beveridge, T. J. & Van de Voort, F. R. (1981) Localization of myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) in cotyledon cells of rapeseed. Journal of Food Biochemistry 5, 3961.CrossRefGoogle Scholar
Münchmeyer, R., Simon, O., Bergner, H., Huth, R. & Wirthgen, B. (1974) Untersuchungen zur Fütterung von Rapsextraktionsschrot an monogastrische Tiere. 2. Mitt.: Einfluβ von Rapsextraktionsschrot auf die Thyroxinsekretionsrate, einige Serum-Enzymaktivitäten und den Plasmaaminosäurengehalt beim Schwein (Studies on the feeding of extracted rapeseed meal to monogastric animals. 2: Effect of extracted rapeseed meal on the rate of thyroxine excretion, on the activities of some serum enzymes and on the level of plasma amino acids in pigs). Archiv für Tierernährung 24, 193203.Google Scholar
National Research Council (1988) Nutrient Requirement of Swine. 9th ed. Washington, DC: National Academy of Science.Google Scholar
Oginsky, E. L., Stein, A. E. & Greer, M. A. (1965) Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society of Experimental Biology and Medicine 119, 360364.CrossRefGoogle ScholarPubMed
Paik, I. K., Robblee, A. R. & Clandinin, D. R. (1980) The effect of sodium thiosulfate and hydroxo-cobalamin on rats fed nitrile-rich or goitrin-rich rapeseed meals. Canadian Journal of Animal Science 60, 10031013.CrossRefGoogle Scholar
Rognoni, J. B., Lemarchand-Beraud, T., Berthier, C. & Simon, C. (1982) Effect of long-term iodide refeeding on the synthesis and secretion of T3, T4 and TSH in severe iodide deficient rats. Acta Endocrinologica 101, 377385.Google Scholar
Rowan, T. G. & Lawrence, T. L. J. (1986) Ileal apparent digestibilities of amino acids, growth and tissue deposition in growing pigs fed low glucosinolate rapeseed meals. Journal of Agricultural Science, Cambridge 107, 493504.Google Scholar
Rudolph, B. (1993). Zur Bestimmung von Thiocyanat im Serum mittels HPLC (Determination of thiocyanate in serum by HPLC). In Qualität und Hygiene von Lebensmitteln in Produktion und Verarbeitung. Proceedings of the 105th Kongress des Verband der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten (VDLUFA) pp. 677679 ]Zarges, H. editor[. Darmstadt, Germany: VDLUFA Verlag.Google Scholar
Rundgren, M. (1983) Low-glucosinolate rapeseed products for pigs – a review. Animal Feed Science and Technology 9, 239262.Google Scholar
Sandell, E. B. & Kolthoff, I. M. (1937) Microdetermination of iodine by a catalytic method. Mikrochimica Acta 1, 9.Google Scholar
Schöne, F., Hennig, A., Groppel, B. & Lange, R. (1991 a). Evaluation of low or high glucosinolate rapeseed meals in experiments with growing pigs and poultry. In Rapeseed in a Changing World. Proceedings of the 8th International Rapeseed Congress pp. 382389 ]McGregor, D. I. editor[. Saskatoon, Canada: University of Saskatchewan.Google Scholar
Schöne, F., Jahreis, G., Kirchheim, U. & Deschner, F. (1994 a). Wirkung von Glucosinolaten und Jod auf die Schilddrüse und die Serum T4-Konzentration rapsgefütterter Schweine (Effect of glucosinolates and iodine on thyroid and serum T4 concentration of rapeseed fed pigs). Proceedings of the Society for Nutrition Physiology 2, 53 Abstr.Google Scholar
Schöne, F., Jahreis, G., Lange, R., Seffner, W., Groppel, B., Hennig, A. & Lüdke, H. (1990) Effect of varying glucosinolate and iodine intake via rapeseed meal diets on serum thyroid hormone level and total iodine in the thyroid in growing pigs. Endocrinologia Experimentalis 24, 415427.Google ScholarPubMed
Schöne, F., Kirchheim, U. & Schumann, W. (1994 b) Glucosinolate degradation by rapeseed myrosinase and effect on rapeseed acceptability by growing pigs. Animal Feed Science and Technology 48, 229235.CrossRefGoogle Scholar
Schöne, F., Kirchheim, U. & Schumann, W. (1995). Full fat rapeseed and rapeseed press cake in pig feeding. In Proceedings of the Ninth International Rapeseed Congress, Cambridge pp. 151153. Dorchester: The Dorset Press.Google Scholar
Schöne, F., Lüdke, H., Geinitz, D. & Grün, M. (1991 b). Effect of low or high glucosinolate rapeseed meal on growth, thyroid hormone, vitamin A and trace element status of pigs. In Rapeseed in a Changing World. Proceedings of the 8th International Rapeseed Congress pp. 15771584 ]McGregor, D. I. editor[. Saskatoon, Canada: University of Saskatchewan.Google Scholar
Schöne, F. & Paetzelt, H. (1987). Feeding of high glucosinolate rapeseed meal or administration of potassium thiocyanate and excretion of SCN- in the urine of growing pigs. In Proceedings of the 7th International Rapeseed Congress Vol. 7, pp. 17351741 ]Krzymanski, J. editor[. Poznan, Poland: Plant Breeding and Acclimatization Institute.Google Scholar
Spiegel, C., Bestetti, G., Rossi, G. & Blum, J. W. (1993) Feeding of presscake meal to pigs: effects on thyroid morphology and function and on thyroid hormone blood levels, on liver and on growth performance. Journal of Veterinary Medicine, Series A 40, 4557.Google Scholar
Steel, G. G. & Torrie, J. H. (1980) Principles and Procedures of Statistics. 2nd ed., pp. 186187. New York and Toronto: McGraw-Hill Inc.Google Scholar
Taurog, A. (1985). Hormone synthesis: thyroid iodine metabolism. In Werner's The Thyroid 5th ed., pp. 5397 ]Ingbar, S. H. and Braverman, L. E., editors[. Philadelphia: J. B. Lippincott Company.Google Scholar
Tiran, B., Wawschinek, O., Eber, O., Beham, A., Lax, S. & Dermelj, M. (1991) Simple determination of iodine in small specimens of thyroid tissue. Experimental and Clinical Endocrinology 98, 3236.CrossRefGoogle ScholarPubMed