Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:59:21.962Z Has data issue: false hasContentIssue false

Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet

Published online by Cambridge University Press:  09 March 2007

José L. Venero
Affiliation:
Departamento de Bioquímica, Bromatología y Toxicología, Universidad de Sevilla, C/ Prof. Garcia González s/n, 41012-Sevilla, Spain
Antonio J. Herrera
Affiliation:
Departamento de Bioquímica, Bromatología y Toxicología, Universidad de Sevilla, C/ Prof. Garcia González s/n, 41012-Sevilla, Spain
Alberto Machado
Affiliation:
Departamento de Bioquímica, Bromatología y Toxicología, Universidad de Sevilla, C/ Prof. Garcia González s/n, 41012-Sevilla, Spain
Josefina Cano
Affiliation:
Departamento de Bioquímica, Bromatología y Toxicología, Universidad de Sevilla, C/ Prof. Garcia González s/n, 41012-Sevilla, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The contents of dopamine (DA) and serotonin (5-HT) and their metabolites were measured in rat substantia nigra and corpus striatum following dietary changes, including restriction of protein content (low-protein diet; LPD) and the contents of several large neutral amino acids (isoleucine, leucine, methionine, phenylalanine, tryptophan and valine) for 25 d. The LPD produced an increase in the concentration of tyrosine (TYR) in the two regions of the brain studied. This effect was also observed with all amino acid deficiencies studied except for valine in the substantia nigra, tryptophan in the striatum and phenylalanine in both regions. Likewise, the concentration of 5-hydroxyindolacetic acid (5-HIAA), the main metabolite of 5-HT, increased in the substantia nigra but not in the striatum after LPD, as well as with all the amino acid deficiencies studied, with the exception of tryptophan deficiency. In this case there was a dramatic effect on all components of the serotoninergic system, with decreases in the concentration of tryptophan (TRP; precursor), 5-HT and 5-HIAA. This behaviour clearly shows an interrelationship between precursor (TRP) availability and 5-HT synthesis and metabolism. With valine deficiency, dopaminergic and serotoninergic systems demonstrated opposite effects in the substantia nigra and the corpus striatum, and the behaviour of the two monoamines was also opposite within each structure. The significance of these changes is discussed.

Type
Amino Acid Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Altar, C. A., Marien, M. R. & Marsall, J. F. (1987). Time course of adaptations in dopamine synthesis, metabolism, and release following nigrostriatal lesions: implications for behavioral recovery from brain injury. Journal of Neurochemistry 48, 390399.CrossRefGoogle ScholarPubMed
Bobillier, P., Seguin, S., Petitjean, F, Salvert, D., Touret, M. & Jouvet, M. (1976). The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Research 113, 449486.CrossRefGoogle ScholarPubMed
Carlsson, A. & Lindqvist, M. (1978). Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn Schmiedeberg's Archives of Pharmacology 303, 157164.CrossRefGoogle ScholarPubMed
Cheramy, A., Leviel, V. & Glowinski, J. (1981). Dendritic release of dopamine in the substantia nigra. Nature 289, 537542.CrossRefGoogle ScholarPubMed
Cohen, G. (1983). The pathobiology of Parkinson's disease: biochemical aspects of dopamine neuron senescence. Journal of Neural Transmission 19, Suppl., 89103.Google ScholarPubMed
Donaldson, J., McGreggor, D. & La Bella, F. (1982). Manganese neurotoxicity: a model for free radical mediated neurodegeneration? Canadian Journal of Pharmacology 107, 13981405.CrossRefGoogle Scholar
During, M. J., Acworth, I. N. & Wurtman, R. J. (1989). Dopamine release in rat striatum: physiological coupling to tyrosine supply. Journal of Neurochemistry 52, 14491454.CrossRefGoogle ScholarPubMed
Elchisak, M. A., Maas, J. W. & Roth, R. H. (1977). Dihydroxyphenylacetic acid conjugate: natural occurrence and demonstration of probenecid-induced accumulation in rat striatum, olfactory tubercles and frontal cortex. European Journal of Pharmacology 41, 369378.CrossRefGoogle ScholarPubMed
Enna, S. J., Stern, L. Z., Wastek, G. J. & Yamamura, H. I. (1977). Neurobiology and pharmacology of Huntington's disease. Life Sciences 20, 205212.CrossRefGoogle ScholarPubMed
Fernstrom, J. D. & Wurtman, R. J. (1971). Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149152.Google Scholar
Fornstedt, B., Pileblad, E. & Carlsson, A. (1990). In vivo autooxidation of dopamine in guinea-pig striatum increases with age. Journal of Neurochemistry 55, 655659.CrossRefGoogle Scholar
Fuxe, K. (1965). Evidence of the existence of monoamines in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiological Scandinavica 247, Suppl., 3785.Google Scholar
Gerson, S. & Baldessarini, R. J. (1974). Nonspecific actions of dihydroxylated tryptamines in the central nervous system of the rat. Journal of Pharmacy and Pharmacology 26, 7173.CrossRefGoogle ScholarPubMed
Gomez-Reino, J., Abaitua, I., Diez Rojas, F. & Campos, R. (1983). Estudio prospectivo del efecto de los corticoides y los scavenger de radicales libres en el tratamiento del S.T.E. (Prospective study on the effect of corticoids and free-radical scavengers in the therapy of the Spanish Toxic Syndrome). Programa de CSIC para el estudio del sindrome tóxico 1, 619623.Google Scholar
Grabowska-Andén, M., Andén, N.-E., Barany, E. & Magnusson, A. (1984). Organic acid transport to the blood from the corpus striatum, the thalamus and the cerebellum of the rat. Acta Pharmacologica et Toxicologica 54, 177182.CrossRefGoogle Scholar
Hery, F., Soubrie, P., Bourgoin, S., Motastruc, J. L., Artaud, F. & Glowinski, J. (1980). Dopamine released from dendrites in the substantia nigra controls the nigral and striatal release of serotonin. Brain Research 193, 143151.CrossRefGoogle ScholarPubMed
Hirsch, E. C., Graybiel, A. M. & Agid, Y. A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345348.CrossRefGoogle ScholarPubMed
Hothersall, J. S., Greenboum, A. L. & McLean, P. (1982). The functional significance of the pentose phosphate pathway in sinaptosomes: protection against peroxidative damage by catecholamines and oxidants. Journal of Neurochemistry 39, 13251332.CrossRefGoogle ScholarPubMed
Mann, D. M. A., Yates, P. O. & Hawkes, J. (1982). The noradrenergic system in Alzheimer and multi-infarct dementias. Journal of Neurology, Neurosurgery and Psychiatry 45, 113119.Google Scholar
Marsden, C. D. (1982). Neurotransmitters and disease; basal ganglia disease. Lancet ii, 11411147.CrossRefGoogle Scholar
Miller, M., Leahy, J. P., McConville, F., Morgane, P. J. & Resnick, O. (1977 a). Effects of developmental protein malnutrition on tryptophan utilization in brain and peripheral tissues. Brain Research Bulletin 2, 347353.Google Scholar
Miller, M., Leahy, J. P., Stern, W. C., Morgane, P. J. & Resnick, O. (1977 b). Tryptophan availability: relation to elevated brain serotonin in developmentally protein-malnourished rats. Experimental Neurology 57, 142152.CrossRefGoogle ScholarPubMed
Miller, M., Resnick, O., Leahy, J. P. & Morgane, P. J. (1976). Brain and peripheral tryptophan availability in protein malnourished rats. Society Neuroscience Abstracts 2, 586.Google Scholar
Murrin, L. C., Morgenroth, V. H. & Roth, R. H. (1976). Dopaminergic neuron effects of electrical stimulation on tyrosine hydroxylase. Molecular Pharmacology 12, 10701081.Google ScholarPubMed
National Academy of Sciences (1978). Nutrient Requirements of Laboratory Animals. 3rd ed. Washington, DC: National Academy of Sciences.Google Scholar
Nieoullon, A., Cheramy, A. & Glowinski, J. (1977). Release of dopamine in vivo from cat substantia nigra. Nature 266, 375377.CrossRefGoogle ScholarPubMed
Olsen, L. & Seiger, A. (1972). Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Zeitschrift für Anatomie und Entwicklungsgeschichte 137, 301316.CrossRefGoogle Scholar
Pardridge, W. M. (1983). Brain metabolism: a perspective from the blood-brain barrier. Physiological Review 63, 14811535.Google Scholar
Penney, J. B. & Young, A. B. (1982). Quantitative autoradiography of neurotransmitter receptors in Huntington's disease. Neurology 32, 13911395.CrossRefGoogle Scholar
Reed, D. J., Brodie, A. E. & Meredith, N. J. (1983). Cellular heterogeneity in the status and functions of cysteine and glutathione. In Functions of Glutathione: Biochemical, Physiological, Toxicological & Clinical Aspects, vol. 1, pp. 3949 [Larsson, A.Holmgren, A., Orrenius, S. and Mannervick, B., editors] New York: Raven Press.Google Scholar
Scheel-Krüger, J. (1986). Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurologica Scandinavica 107, Suppl., 154.Google ScholarPubMed
Schoefield, J. D. & Booth, M. R. (1983). Wheat proteins and their technological significance. In Developments in Food Proteins, vol. 2, pp. 165 [Hudson, B. F. J., editor]. London: Applied Science Publishers.Google Scholar
Sies, H., Brigelius, R. & Akerboom, T. P. M. (1983). Intrahepatic glutathione status. In Functions of Glutathione: Biochemical, Physiological, Toxicological & Clinical Aspects, vol. 1 [Larsson, A., Holmgren, A., Orrenius, S. and Mannervick, B., editors]. New York: Raven Press.Google Scholar
Smith, Q. R., Momma, S., Aoyagi, M. & Rapaport, S. I. (1987). Kinetics of neutral aminoacid transport across the blood-brain barrier. Journal of Neurochemistry 49, 16511658.CrossRefGoogle ScholarPubMed
Stachowiak, M. K., Stricker, E. M., Jacoby, J. H. & Zigmond, M. J. (1986). Increased tryptophan hydroxylase activity in serotoninergic nerve terminals spared by 5,7-dihydroxytryptamine. Biochemical Pharmacology 35, 12411248.CrossRefGoogle Scholar
Stern, W. C., Miller, M., Forbes, W. B., Leahy, J. P., Morgane, P. J. & Resnick, O. (1976). Effects of protein malnutrition during development on protein synthesis in brain and peripheral tissues. Brain Research Bulletin 1, 2731.CrossRefGoogle ScholarPubMed
Tipton, K. F. (1988). Toxins and Parkinson's disease. Journal of the Irish Colleges of Physicians and Surgeons 17, 100104.Google Scholar
Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiologica Scandinavica 367, Suppl., 148.CrossRefGoogle ScholarPubMed
Van der Kooi, D. (1979). The organization of the thalamic, nigral and raphe cells projecting to the medial versus lateral caudate-putamen. A fluorescent retrograde double labelling study. Brain Research 169, 381387.CrossRefGoogle Scholar
Venero, J. L., Santiago, M., Machado, A. & Cano, J. (1989). Determination of monoamines and both forms of monoamine oxidase in the rat's substantia nigra during postnatal development. Life Sciences 45, 12771283.CrossRefGoogle ScholarPubMed
West, C. D. & Kemper, T. L. (1976). The effect of a low protein diet on the anatomical development of the rat brain. Brain Research 107, 221237.Google Scholar
Westerink, B. H. C. & De Vries, J. B. (1991). Effect of precursor loading on the synthesis rate and release of dopamine and serotonin in the striatum: a microdialysis study in conscious rats. Journal of Neurochemistry 56, 228233.CrossRefGoogle ScholarPubMed
Westerink, B. H. C. & Spaan, S. J. (1982). On the significance of endogenous 3-methoxytyramine for the effects of centrally acting drugs on dopamine release in rat brain. Journal of Neurochemistry 38, 680686.CrossRefGoogle ScholarPubMed
Winick, M. (1989). Malnutrition and brain development. Journal of Pediatrics 74, 667679.Google Scholar
Winick, M. & Rosso, P. (1973). Effects of malnutrition on brain development. In Biology of Brain Dysfunction, vol. 1, pp. 301307 [Gaull, G. E., editor]. New York: Plenum Press.CrossRefGoogle Scholar