Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-22T02:01:04.923Z Has data issue: false hasContentIssue false

The spread and status of the Gough Moorhen Gallinula comeri on Tristan da Cunha

Published online by Cambridge University Press:  24 June 2025

Harry H. Marshall*
Affiliation:
https://ror.org/0138va192 Royal Society for the Protection of Birds , The Lodge, Sandy, UK
Coleen L. Moloney
Affiliation:
Department of Biological Sciences, https://ror.org/03p74gp79 University of Cape Town , Rondebosch, Cape Town, South Africa
Trevor Glass
Affiliation:
Tristan da Cunha Government, Edinburgh-of-the-Seven-Seas, Tristan da Cunha
Richard Grundy
Affiliation:
Tristan da Cunha Association, Glastonbury, UK
Andy Schofield
Affiliation:
https://ror.org/0138va192 Royal Society for the Protection of Birds , The Lodge, Sandy, UK
Peter G. Ryan*
Affiliation:
FitzPatrick Institute of African Ornithology, https://ror.org/03p74gp79 University of Cape Town , Rondebosch, South Africa
*
Corresponding authors: Harry H. Marshall and Peter G. Ryan; Emails: harry.marshall@rspb.org.uk; pryan31@gmail.com
Corresponding authors: Harry H. Marshall and Peter G. Ryan; Emails: harry.marshall@rspb.org.uk; pryan31@gmail.com

Summary

Rallidae are frequent colonists of oceanic islands and are often susceptible to introduced predators. The Tristan Moorhen Gallinula nesiotis was endemic to Tristan da Cunha, South Atlantic and is thought to have gone extinct in the late nineteenth century. The closely related Gough Moorhen G. comeri was introduced to Tristan da Cunha from neighbouring Gough Island in 1956. We report historical records of their spread across Tristan da Cunha and the results of a population survey undertaken in February–March 2024. Gough Moorhens are now found across the entire island wherever there is suitable habitat from sea level to above 900 m elevation. Gough Moorhens prefer fern bush habitat on the Base, the plateau above the steep coastal cliffs. The total population is approximately 41,500 birds (95% confidence interval 24,000–72,000). Our density estimates (3–6 birds/ha) are similar to estimates for Gough Moorhens on Gough Island before the post-2021 population decline and are at the higher end of densities reported for oceanic island rallids, suggesting that the Tristan da Cunha population may be near carrying capacity.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Beintema, A.J. (1972). The history of the Island Hen (Gallinula nesiotis), the extinct flightless gallinule of Tristan da Cunha. Bulletin of the British Ornithologists’ Club 92, 106113.Google Scholar
BirdLife International (2021). Gallinula comeri. The IUCN Red List of Threatened Species. e.T22692866A195129158.Google Scholar
Bond, A.L., Carlson, C.J. and Burgio, K.R. (2019). Local extinctions of insular avifauna on the most remote inhabited island in the world. Journal of Ornithology 160, 4960.10.1007/s10336-018-1590-8CrossRefGoogle Scholar
Bond, A.L. and McClelland, G. (2021). Diet of the introduced Gough Moorhen Gallinula comeri on Tristan da Cunha. Ornis Svecica 31, 107112.10.34080/os.v31.23476CrossRefGoogle Scholar
Curnutt, J. and Pimm, S. (2001). How many bird species in Hawaii and the Central Pacific before first contact? Studies in Avian Biology 22, 1530.Google Scholar
Dilley, B.J., Davies, D., Repetto, J., Swain, G. and Ryan, P.G. (2020). Rats and prions at Tristan da Cunha Island. Ostrich 91, 240243.10.2989/00306525.2020.1771622CrossRefGoogle Scholar
Dilley, B.J., Swain, G., Repetto, J. and Ryan, P.G. (2021). Using playback to estimate the distribution and density of the world’s smallest flightless bird, the Inaccessible Island Rail Atlantisia rogersi. Bird Conservation International 31, 286292.CrossRefGoogle Scholar
Environment Systems (2019). Habitat Classification Map for Tristan da Cunha. Peterborough: Joint Nature Conservation Committee (JNCC).Google Scholar
Fiske, I. and Chandler, R. (2011). unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 123.10.18637/jss.v043.i10CrossRefGoogle Scholar
Gaspar, J., Gibb, G.C. and Trewick, S.A. (2020). Convergent morphological responses to loss of flight in rails (Aves: Rallidae). Ecology and Evolution 10, 61866207.10.1002/ece3.6298CrossRefGoogle ScholarPubMed
Groenenberg, D.S.J., Beintema, A.J., Dekker, R.W.R.J. and Gittenberger, E. (2008). Ancient DNA elucidates the controversy about the flightless island hens (Gallinula sp.) of Tristan da Cunha. PLOS ONE 3, e1835.10.1371/journal.pone.0001835CrossRefGoogle ScholarPubMed
Hicks, A., Barclay, J., Mark, D.F. and Loughlin, S. (2012). Tristan da Cunha: Constraining eruptive behavior using the 40Ar/39Ar dating technique. Geology 40, 723726.10.1130/G33059.1CrossRefGoogle Scholar
Hockey, P.A.R., Wanless, R.M. and von Brandis, R. (2011). Demographic resilience of territorial island birds to extinction: the flightless Aldabra Rail Dryolimnas (cuvieri) aldabranus as an example. Ostrich 82, 19.10.2989/00306525.2011.556794CrossRefGoogle Scholar
Holdgate, M.W., LeMaitre, R.W., Swales, M.K. and Wace, N.M. (1956). The Gough Island Scientific Survey, 1955-56. Nature 179, 234236.10.1038/178234a0CrossRefGoogle Scholar
Hume, J.P. and Martill, D. (2019). Repeated evolution of flightlessness in Dryolimnas rails (Aves: Rallidae) after extinction and recolonization on Aldabra. Zoological Journal of the Linnean Society 186, 666672.10.1093/zoolinnean/zlz018CrossRefGoogle Scholar
Jones, C.W., Risi, M.M., Osborne, A.M., Parker, G.C., Rexer-Huber, K., Le Bouard, F. et al. (2020). Abundance, distribution and breeding success of the endemic Gough Island Finch Rowettia goughensis between 2009 and 2018. Emu – Austral Ornithology 120, 230238.10.1080/01584197.2020.1773859CrossRefGoogle Scholar
Jones, H.P., Holmes, N.D., Butchart, S.H., Tershy, B.R., Kappes, P.J., Corkery, I. et al. (2016). Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences –PNAS 113, 40334038.10.1073/pnas.1521179113CrossRefGoogle ScholarPubMed
Kellner, K.F., Smith, A.D., Royle, J.A., Kéry, M., Belant, J.L. and Chandler, R.B. (2023). The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution 14, 14081415.10.1111/2041-210X.14123CrossRefGoogle Scholar
Kirchman, J.J. (2012). Speciation of flightless rails on islands: A DNA-based phylogeny of the typical rails of the Pacific. The Auk 129, 5669.Google Scholar
Lévêque, L., Buettel, J.C., Carver, S. and Brook, B.W. (2021). Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae). Royal Society Open Science 8, 210262.10.1098/rsos.210262CrossRefGoogle ScholarPubMed
Mazerolle, M.J. (2023). AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.3.2. https://cran.r-project.org/package=AICcmodavgGoogle Scholar
McNab, B.K. (1994). Energy conservation and the evolution of flightlessness in birds. American Naturalist 144, 628642.10.1086/285697CrossRefGoogle Scholar
Miskelly, C.M. and Powlesland, R.G. (2013). Conservation translocations of New Zealand birds, 1863-2012. Notornis 60, 328.10.63172//252776oqqppqCrossRefGoogle Scholar
Nagelkerke, N.J.D. (2004). A note on a general definition of the coefficient of determination. Biometrika 78, 691692.10.1093/biomet/78.3.691CrossRefGoogle Scholar
NASA JPL (2013). Data set: NASA Shuttle Radar Topography Mission Global 1 arc second. NASA EOSDIS Land Processes Distributed Active Archive Center. Available at https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (accessed 18 July 2024).CrossRefGoogle Scholar
Oppel, S., Bond, A.L., M.d.L, Brooke., Harrison, G., Vickery, J.A. and Cuthbert, R.J. (2016). Temporary captive population and rapid population recovery of an endemic flightless rail after a rodent eradication operation using aerially distributed poison bait. Biological Conservation 204, 442448.CrossRefGoogle Scholar
Oppel, S., Eisler, R. and Aspey, N. (2024). Population status of the endemic Pitcairn Reed Warbler Acrocephalus vaughani on Pitcairn Island, South Pacific. Bird Conservation International 34, e5.10.1017/S0959270923000370CrossRefGoogle Scholar
R Core Team (2023). R: A Language and Environment for Statistical Computing, version 4.2.3. Vienna: R Foundation for Statistical Computing.Google Scholar
Rand, A.L. (1955). The origin of the land birds of Tristan da Cunha. Fieldiana: Zoology 37, 139166.Google Scholar
Richardson, M.E. (1984). Aspects of the ornithology of the Tristan da Cunha group and Gough Island, 1972-1974. Cormorant 12, 123201.Google Scholar
Royle, J.A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108115.10.1111/j.0006-341X.2004.00142.xCrossRefGoogle ScholarPubMed
Royle, J.A. and Nichols, J.D. (2003). Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777790.10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2CrossRefGoogle Scholar
Royle, J.A., Nichols, J.D. and Kéry, M. (2005). Modelling occurrence and abundance of species when detection is imperfect. Oikos 110, 353359.10.1111/j.0030-1299.2005.13534.xCrossRefGoogle Scholar
Ryan, P.G. (ed.) (2007). Field Guide to the Animals and Plants of Tristan da Cunha and Gough Island. Newbury: Pisces Publications.Google Scholar
Slikas, B., Olson, S.L. and Fleischer, R.C. (2002). Rapid, independent evolution of flightlessness in four species of Pacific Island rails (Rallidae): an analysis based on mitochondrial sequence data. Journal of Avian Biology 33, 514.10.1034/j.1600-048X.2002.330103.xCrossRefGoogle Scholar
Spatz, D.R., Holmes, N.D., Will, D.J., Hein, S., Carter, Z.T., Fewster, R.M. et al. (2022). The global contribution of invasive vertebrate eradication as a key island restoration tool. Scientific Reports 12, 13391.10.1038/s41598-022-14982-5CrossRefGoogle ScholarPubMed
Spatz, D.R., Young, L.C., Holmes, N.D., Jones, H.P., VanderWerf, E.A., Lyons, D.E. et al. (2023). Tracking the global application of conservation translocation and social attraction to reverse seabird declines. Proceedings of the National Academy of Sciences – PNAS 120, e2214574120.10.1073/pnas.2214574120CrossRefGoogle Scholar
Steadman, D.W. (1995). Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267, 11231131.10.1126/science.267.5201.1123CrossRefGoogle ScholarPubMed
Stervander, M., Ryan, P.G., Melo, M. and Hansson, B. (2019). The origin of the world’s smallest flightless bird, the Inaccessible Island Rail Atlantisia rogersi (Aves: Rallidae). Molecular Phylogenetics and Evolution 130, 9298.CrossRefGoogle ScholarPubMed
van de Crommenacker, J., Bunbury, N., Jackson, H.A., Nupen, L.J., Wanless, R., Fleischer-Dogley, F. et al. (2019). Rapid loss of flight in the Aldabra white-throated rail. PLOS ONE 14, e0226064.10.1371/journal.pone.0226064CrossRefGoogle ScholarPubMed
Wace, N.M. and Holdgate, M.W. (1958). The vegetation of Tristan da Cunha. Journal of Ecology 46, 595620.10.2307/2257541CrossRefGoogle Scholar
Watkins, B.P. and Furness, R.W. (1986). Population status, breeding and conservation of the Gough Moorhen. Ostrich 57, 3236.10.1080/00306525.1986.9633636CrossRefGoogle Scholar
Woinarski, J.C.Z., MacRae, I., Flores, T., Detto, T., Reid, J., Pink, C. et al. (2016). Conservation status and reintroduction of the Cocos Buff-banded Rail, Gallirallus philippensis andrewsi. Emu – Austral Ornithology 116, 3240.10.1071/MU15052CrossRefGoogle Scholar
Woolley, J. (1997). Island cocks – where did they come from? Tristan da Cunha Association Newsletter 21, 67.Google Scholar
Supplementary material: File

Marshall et al. supplementary material

Marshall et al. supplementary material
Download Marshall et al. supplementary material(File)
File 18.3 KB