Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:38:26.894Z Has data issue: false hasContentIssue false

The Avifauna of the Rio Branco, an Amazonian evolutionary and ecological hotspot in peril

Published online by Cambridge University Press:  24 June 2019

LUCIANO N. NAKA*
Affiliation:
Laboratório de Ornitologia. Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil. Universidade Federal de Roraima. Programa de Pós-Graduação em Recursos Naturais (Pronat), Boa Vista, Roraima, Brazil.
THIAGO ORSI LARANJEIRAS
Affiliation:
Instituto Nacional de Pesquisas da Amazônia, Amazonas, Manaus, Brazil. and Instituto Chico Mendes de Conservação da Biodiversidade, Parque Nacional do Viruá, Boa Vista-RR, Brazil.
GISIANE RODRIGUES LIMA
Affiliation:
Universidade Federal do Amazonas. Programa de Pós-Graduação em Zoologia, Manaus, Amazonas, Brazil.
ALICE C. PLASKIEVICZ
Affiliation:
Universidade Federal de Roraima. Programa de Pós-Graduação em Recursos Naturais (Pronat), Boa Vista, Roraima, Brazil.
DANIELE MARIZ
Affiliation:
Laboratório de Ornitologia. Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
BRUNA M. DA COSTA
Affiliation:
Laboratório de Ornitologia. Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
H. SUZANY G. DE MENEZES
Affiliation:
Laboratório de Ornitologia. Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
MARCELA DE F. TORRES
Affiliation:
Instituto Nacional de Pesquisas da Amazônia, Amazonas, Manaus, Brazil.
MARIO COHN-HAFT
Affiliation:
Instituto Nacional de Pesquisas da Amazônia, Amazonas, Manaus, Brazil.
*
*Author for correspondence; e-mail: Lnaka1@lsu.edu

Summary

The Rio Branco is a river with unique biogeographic and ecological features, threatened by the Brazilian Government’s plan to build a major hydroelectric dam and associated hydroway along its course. The river crosses one of Amazonia’s largest rainfall gradients and a major geomorphological boundary along a savanna/forest ecotone, marked by the Bem Querer rapids. Above the rapids, the upper Rio Branco runs through the Boa Vista sedimentary formation and crosses the crystalline rocks of the Guiana Shield, and its margins are flanked by gallery forests. Downriver, it runs through a low-lying sedimentary basin, with Amazonian floodplain forests along its margins. Here, we present the results of ∼ 15 years of ornithological research on the Branco and its major tributaries, providing baseline data and evaluating potential threats to the riverine avifauna. Our surveys included opportunistic observations and standardized surveys along the entire length of the river in 16 systematically distributed localities. We catalogued 439 bird species, 87% of which are documented by physical evidence (specimens, recordings, photographs). Forty-six percent are restricted to single habitats, suggesting a high degree of habitat specialisation. A third of the species are widely distributed along the river, whereas 45% are restricted to either the upper or the lower Rio Branco, including 40 and 30 Indicator Species, respectively. Twenty-five species are threatened at global or national levels, including two ‘Critically Endangered’, nine ‘Vulnerable’, and 14 ‘Near Threatened’. We present a list of 50 bird species that are candidates for monitoring studies. Threats to the avifauna from dam construction include permanent flooding above the dam, eliminating gallery forests, river islands, and sandy beaches, and the disruption of the flood pulse along the river, affecting river island and floodplain forest specialists, many of which are globally threatened with extinction. If built, the Bem Querer dam will wipe out the ecotone region and affect dramatically the river’s avifauna.

Type
Research Article
Copyright
Copyright © BirdLife International 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alho, C. J. (2011) Environmental effects of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review. Oecol. Australis 15: 593604CrossRefGoogle Scholar
Anderson, M. J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol . 26: 3246Google Scholar
Araujo, W. F., Andrade Junior, A. S. D., Medeiros, R. D. D. and Sampaio, R. A. (2001) Precipitação pluviométrica mensal provável em Boa Vista, estado de Roraima, Brasil. Rev. Brasil. Engenharia Agrícola e Ambiental 5: 563567.CrossRefGoogle Scholar
Assahira, C., Piedade, M. T. F., Trumbore, S. E., Wittmann, F., Cintra, B. B. L., Batista, E. S., de Resende, A. F. and Schöngart, J. (2017) Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. For. Ecol. Manage. 396: 113123.10.1016/j.foreco.2017.04.016CrossRefGoogle Scholar
Barbosa, R. I. (1997) Distribuição das Chuvas em Roraima. Pp. 325335 in Barbosa, R. I., Ferreira, E. J. G., and Castellón, E. G., eds. Homem, ambiente e ecologia no estado de Roraima. Manaus: INPA.Google Scholar
Benchimol, M. and Peres, C. A. (2015) Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. PLoS ONE 10(7): e0129818.10.1371/journal.pone.0129818CrossRefGoogle ScholarPubMed
Boubli, J. P., Ribas, C., Alfaro, J. W. L., Alfaro, M. E., da Silva, M. N. F., Pinho, G. M. and Farias, I. P. (2015) Spatial and temporal patterns of diversification on the Amazon: A test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Mol. Phylogenet. Evol. 82: 400412.CrossRefGoogle ScholarPubMed
Cintra, R. (2015) Spatial distribution and composition of waterbirds in relation to limnological conditions in the Amazon basin. Hydrobiologia 747: 235252.10.1007/s10750-014-2148-2CrossRefGoogle Scholar
Cochrane, S. M., Matricardi, E. A., Numata, I. and Lefebvre, P. A. (2017) Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: Upper Madeira River example 2006–2015. Remote Sensing Applications: Society and Environment 7: 18.CrossRefGoogle Scholar
Cohn-Haft, M., Naka, L. N. and Fernandes, A. (2007) Avifauna da várzea dos rios Solimões e Amazonas. Pp. 287323 in Albernaz, A. L. K. M., org. Conservação da várzea: identifcação e caracterização de regiões biogeográfcas. Manaus, Brasil: IBAMA/ProVárzea.Google Scholar
Cremon, E. H., de Fátima Rossetti, D., de Oliveira Sawakuchi, A. and Cohen, M. C. L. (2016) The role of tectonics and climate in the late Quaternary evolution of a northern Amazonian River. Geomorphology 271: 2239.CrossRefGoogle Scholar
Dambros, C. (2014) Poncho. R. figshare. Code (available at https://doi.org/10.6084/m9.figshare.753347.v3).CrossRefGoogle Scholar
De Cáceres, M. and Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Code (available at http://sites.google.com/site/miqueldecaceres).Google Scholar
Díaz, S., Lavorel, S., Chapin, F. S., Tecco, P. A., Gurvich, D. E., and Grigulis, K. (2007). Functional diversity—at the crossroads between ecosystem functioning and environmental filters. In Terrestrial ecosystems in a changing world (pp. 8191). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Dufrêne, M. and Legendre, P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345366.Google Scholar
Empresa de Pesquisa Energética (2011) Bacia hidrográfica do Rio Branco/RR, estudos de inventário hidrelétrico. Vol 1. Avaliable at http://www.epe.gov.br/MeioAmbiente/ Documents/AAI%20Branco/1%20-%20AAI%20Branco%20-%20Relatório%20Completo.pdf.Google Scholar
Fearnside, P. M. (2014) Impacts of Brazil’s Madeira River dams: Unlearned lessons for hydroelectric development in Amazonia. Environmental Science and Policy 38: 164172.CrossRefGoogle Scholar
Fearnside, P. M. (2015a) Hidrelétricas na Amazônia: impactos ambientais e sociais na tomada de decisões sobre grandes obras. Manaus, Brazil: Editora do INPA.Google Scholar
Fearnside, P. M. (2015b) Brazil’s São Luiz do Tapajós dam: the art of cosmetic environmental impact assessments. Water Alternatives 8: 373396.Google Scholar
Fearnside, P. M. and Barbosa, R. I. (1996) The Cotingo Dam as a test of Brazil’s system for evaluating proposed developments in Amazonia. Environ. Manage. 20: 631.CrossRefGoogle Scholar
Ferreira, E., Zuanon, J., Forsberg, B., Goulding, M. and Briglia-Ferreira, S. R. (2007) Rio Branco: peixes, ecologia e conservação de Roraima. Amazon Conservation Association, Editora Biblos.Google Scholar
Ferreira, J., Aragão, L. E. O. C., Barlow, J., Barreto, P., Berenguer, E., Bustamante, M., Gardner, T. A., Lees, A. C., Lima, A., Louzada, J. and Pardini, R. (2014) Brazil’s environmental leadership at risk. Science 346: 706707.CrossRefGoogle ScholarPubMed
Finer, M. and Jenkins, C. N. (2012) Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS One 7: e35126.CrossRefGoogle ScholarPubMed
Forsberg, B. R., Melack, J. M., Dunne, T., Barthem, R. B., Goulding, M., Paiva, R. C., Sorribas, M. V., Silva, U. L. Jr and Weisser, S. (2017) The potential impact of new Andean dams on Amazon fluvial ecosystems. PloS One 12(8): e0182254.CrossRefGoogle ScholarPubMed
Goulding, M., Barthem, R. and Ferreira, E. J. G. (2003) The Smithsonian atlas of the Amazon. Washington, DC: Smithsonian Institution Press.Google Scholar
Instituto Chico Mendes de Conservação da Biodiversidade (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume III - Aves. Pp. 1709 in Instituto Chico Mendes de Conservação da Biodiversidade, org. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília: ICMBio.Google Scholar
IUCN (2018) The IUCN Red List of Threatened Species. Version 2018-1. <http://www.iucnredlist.org>. Downloaded on 05 July 2018..+Downloaded+on+05+July+2018.>Google Scholar
Junk, W. J., Piedade, M. T. F., Schöngart, J., Cohn-Haft, M., Adeney, J. M. and Wittmann, F. (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31: 623640.CrossRefGoogle Scholar
Junk, W. J., Wittmann, F., Schöngart, J., Maria, T. and Piedade, F. (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol. Manage. 23: 677693.CrossRefGoogle Scholar
Laranjeiras, T. O., Naka, L. N., Bechtoldt, C. L., Costa, T. V., Andretti, C. B., Cerqueira, M. C., Torres, M. F., Rodrigues, G. L., Santos, M. P. D., Pacheco, A., Sardelli, C., Barnett, J. M. and Cohn-Haft, M. (2014) The avifauna of Viruá National Park, Roraima, reveals megadiversity in northern Amazonia. Rev. Brasil. Ornitol. 22: 138171.Google Scholar
Laranjeiras, T. O., Naka, L. N. and Cohn-Haft, M. (2019) Using river color to predict Amazonian floodplain forest avifauna in the world’s largest black-water river basin. Biotropica. 51: 330341.CrossRefGoogle Scholar
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A. and Ribas, C. C. (2017) Damming the rivers of the Amazon basin. Nature 546: 363369.CrossRefGoogle ScholarPubMed
Latrubesse, E. M., Stevaux, J. C. and Sinha, R. (2005) Tropical Rivers. Geomorphology 70: 187206.CrossRefGoogle Scholar
Laurance, W. F., Peletier-Jellema, A., Geenen, B., Koster, H., Verweij, P., Van Dijck, P., Lovejoy, T. E., Schleicher, J. and Van Kuijk, M. (2015) Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 25: 259262.CrossRefGoogle ScholarPubMed
Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M., Jansen, A. and Zuanon, S. (2016) Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 25: 451466.CrossRefGoogle Scholar
McArdle, B. H. and Anderson, M. J. (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290297.CrossRefGoogle Scholar
Naka, L. N. (2011) Avian distribution patterns in the Guiana Shield: implications for the delimitation of Amazonian areas of endemism. J. Biogeogr. 38: 681696.CrossRefGoogle Scholar
Naka, L. N. (2015) Barragens do rio Tapajós: uma avaliação crítica do Estudo e Relatório de Impacto Ambiental (EIA/RIMA) do Aproveitamento Hidrelétrico São Luiz do Tapajós. Greenpeace. http://greenpeace.org.br/tapajos/docs/analise-eia-rima.pdf.Google Scholar
Naka, L. N. and Brumfield, R. T. (2018) The dual role of Amazonian rivers in the generation and maintenance of avian diversity. Sci. Advances 4(8): eaar857.5CrossRefGoogle ScholarPubMed
Naka, L. N., Bechtoldt, C. L., Henriques, L. M. P. and Brumfield, R. T. (2012) The role of physical barriers in the location of avian suture zones in the Guiana Shield, northern Amazonia. Am. Nat. 179: E115E132.CrossRefGoogle ScholarPubMed
Naka, L. N., Cohn-Haft, M., Mallet-Rodrigues, F., Santos, M. P. D. and Torres, M. F. (2006) The Avifauna of the Brazilian state of Roraima: bird distribution and biogeography in the Rio Branco basin. Rev. Brasil. Ornitol. 14: 191232.Google Scholar
Naka, L. N., Cohn-Haft, M., Whittaker, A., Barnett, J. M. and Torres, M. D. F. (2007) Avian biogeography of Amazonian flooded forests in the Rio Branco Basin, Brazil. Wilson J. Ornithol. 119: 439449.CrossRefGoogle Scholar
Prance, G. T. (1979) Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31: 2638.CrossRefGoogle Scholar
Pringle, C. M., Freeman, M. C. and Freeman, B. J. (2000) Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical–temperate comparisons. BioScience 50: 807823.CrossRefGoogle Scholar
RAISG (Rede Amazônica de Informacão Socioambiental Georeferenciada) (2013) Amazonía Bajo Presión. Socio-Environmental Institute, São Paulo, SP, Brazil. http://www.raisg.socioambiental.org/amazonia-bajo-presion-2012.Google Scholar
Remsen, J. V. Jr and Parker, T. A. III (1983) Contribution of river-created habitats to bird species richness in Amazonia. Biotropica 15: 223231.CrossRefGoogle Scholar
Resende, A. F. de, Schöngart, J., Streher, A. S., Ferreira-Ferreira, J., Piedade, M. T. F. and Silva, T. S. F. (2019) Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production. Sci. Total Environ. 659: 587598.CrossRefGoogle ScholarPubMed
Robinson, S. K. and Terborgh, J. (1997) Bird community dynamics along primary successional gradients of an Amazonian whitewater river. Ornithol. Monogr. 48: 641672.CrossRefGoogle Scholar
Rosenberg, G. H. (1990) Habitat specialization and foraging behavior by birds of Amazonian river islands in northeastern Peru. Condor 92: 427443.CrossRefGoogle Scholar
Sá-Oliveira, J. C., Hawes, J. E., Isaac-Nahum, V. J. and Peres, C. A. (2015) Upstream and downstream responses of fish assemblages to an Eastern Amazonian hydroelectric dam. Freshw. Biol. 60: 20372050.CrossRefGoogle Scholar
Sousa Lobo, G. de, Wittmann, F. and Piedade, M. T. F. (2019) Response of black-water floodplain (igapó) forests to flood pulse regulation in a dammed Amazonian river. For. Ecol. Manage. 434: 110118.CrossRefGoogle Scholar
Supplementary material: File

Naka et al. supplementary material

Naka et al. supplementary material 1

Download Naka et al. supplementary material(File)
File 2.6 MB
Supplementary material: PDF

Naka et al. supplementary material

Naka et al. supplementary material 2

Download Naka et al. supplementary material(PDF)
PDF 300.4 KB
Supplementary material: PDF

Naka et al. supplementary material

Naka et al. supplementary material 3

Download Naka et al. supplementary material(PDF)
PDF 1.8 MB