Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T19:43:15.717Z Has data issue: false hasContentIssue false

Nest cameras do not affect nest survival in a meadow-nesting shorebird

Published online by Cambridge University Press:  02 December 2020

VOLKER SALEWSKI*
Affiliation:
Michael-Otto-Institut im NABU, Goosstroot 1, 24861 Bergenhusen, Germany.
LUIS SCHMIDT
Affiliation:
Michael-Otto-Institut im NABU, Goosstroot 1, 24861 Bergenhusen, Germany.
*
*Author for correspondence; email: Volker.Salewski@NABU.de

Summary

Identifying the fate of birds’ nests and the causes of breeding failure is often crucial for the development of conservation strategies for threatened species. However, collecting these data by repeatedly visiting nests might itself contribute to nest failure or bias. To solve this dilemma, automatic cameras have increasingly been used as a time-efficient means for nest monitoring. Here, we consider whether the use of cameras itself may influence hatching success of nests of the Black-tailed Godwit Limosa limosa at two long-term study sites in northern Germany. Annually between 2013 and 2019, cameras were used to monitor godwit nests. In 2014 and 2019, nests were randomly equipped with cameras or not, and nest survival checked independently of the cameras. Nest-survival models indicated that survival probabilities varied between years, sites and with time of the season, but were unaffected by the presence of cameras. Even though predation is the main cause of hatching failure in our study system, we conclude that predators did not learn to associate cameras with food either when the cameras were initially installed or after they had been used for several years. Cameras were thus an effective and non-deleterious tool to collect data for conservation in this case. As other bird species may react differently to cameras at their nests, and as other sets of predators may differ in their ability to associate cameras with food, the effect of cameras on breeding success should be carefully monitored when they are used in a new study system.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andes, A. K., Shaffer, T. L., Sherfy, M. H., Hofer, C. M., Dovichin, C. M. and Ellis-Felege, S. N. (2019) Accuracy of nest fate classification and predator identification from evidence at nests of Least Terns and Piping Plovers. Ibis 161: 286300.CrossRefGoogle Scholar
Beintema, A. J., Müskens, G. J. D. M. (1987) Nesting success of birds breeding in Dutch agricultural grasslands. J. Appl.Ecol. 24: 743758.CrossRefGoogle Scholar
Bellebaum, J. (2002) Prädation als Gefährdung bodenbrütender Vögel in Deutschland – eine Übersicht. Ber. Vogelschutz 39: 95117.Google Scholar
Bellebaum, J. and Boschert, M. (2003) Bestimmung von Predatoren an Nestern von Wiesenvögeln. Vogelwelt 124: 8391.Google Scholar
Bêty, J. and Gauthier, G. (2001) Effects of nest visits on predator activity and predation rate in a Greater Snow Goose colony. J. Field Ornithol. 72: 573586.CrossRefGoogle Scholar
Bolton, M., Butcher, N., Sharpe, F., Stevens, D. and Fisher, G. (2007) Remote monitoring of nests using digital camera technology. J. Field Ornithol. 78: 213220.CrossRefGoogle Scholar
Brown, L. M. and Graham, C. H. (2015) Demography, traits and vulnerability to urbanization: can we make generalizations? J. Appl. Ecol. 52: 14551464.CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical information-theoretic approach. New York, USA: Springer.Google Scholar
Buler, J. J. and Hamilton, R. B. (2000) Predation of natural and artificial nests in a southern pine forest. Auk 117: 739747.CrossRefGoogle Scholar
Burns, F., Mcculloch, N., Székely, T. and Bolton, M. (2013) The impact of introduced predators on an island endemic, the St Helena Plover, Charadrius sanctaehelenae. Bird Conserv. Internatn. 23: 125135.CrossRefGoogle Scholar
Cantar, R. V. and Montgomerie, R. D. (1985) The influence of weather on incubation scheduling of the White-rumped Sandpiper (Calidris fuscicollis): a uniparental incubator in a cold environment. Behaviour 95: 261289.Google Scholar
Coates, P. S., Connelly, J. W. and Delehanty, D. J. (2008) Predators of Greater Sage-grouse nests identified by video monitoring. J. Field Ornithol. 79: 421428.CrossRefGoogle Scholar
Conover, M. R. (2007) Predator-prey dynamics. The role of olfaction. Boca Raton, USA: CRC Press.CrossRefGoogle Scholar
Cox, W. A., Pruett, M. S., Benson, T. J., Chiavacci, S. J. and Thompson, F. R. (2012) Development of camera technology for monitoring nests. Pp. 185210 in Ribic, C. A., Thompson, F. R. and Pietz, P. J., eds. Video surveillance of nesting birds. Studies in Avian Biol. 43.CrossRefGoogle Scholar
Dinsmore, S. J., White, G. C. and Knopf, F. L. (2002) Advanced techniques for modeling avian nest survival. Ecology 83: 34763488.CrossRefGoogle Scholar
Dukas, R. and Kamil, A. C. (2001) Limited attention: the constraint underlying search image. Behav. Ecol. 12: 192199.CrossRefGoogle Scholar
Ellis-Felege, S. N. and Caroll, J. P. (2012) Gamebirds and nest cameras: present and future. Pp. 3544 in Ribic, C. A., Thompson, F. R. and Pietz, P. J., eds. Video surveillance of nesting birds. Studies in Avian Biol. 43.CrossRefGoogle Scholar
Engel, N., Végváry, Z., Rice, R., Kubelka, V. and Székely, T. (2020) Incubating parents serve as visual cues to predators in Kentish plover (Charadrius alexandrinus). PLoS ONE 15: e0236489.CrossRefGoogle ScholarPubMed
Gill, J. A., Langston, R. H. W., Alves, J. A., Atkinson, P. W., Bogher, P., Vieira, N. C., Crockford, N. J., Gélinaud, G., Groen, N., Gunnarsson, T. G., Hayhow, B., Hooijmeijer, J., Kentie, R., Kleijn, D., Lourenço, P. M., Masero, J. A., Meunier, F., Potts, P. M., Roodbergen, M., Schekkerman, H., Schröder, J., Wymenga, E. and Piersma, T. (2007) Contrasting trends in two Black-tailed Godwit populations: a review of causes and recommendations. Wader Study Group Bull. 114: 4350.Google Scholar
Götmark, F. (1992) The effect of investigator disturbance on nesting birds. Curr. Ornithol. 9: 63104.CrossRefGoogle Scholar
Green, R. E. (1999) Applications of large-scale studies of demographic rates to bird conservation. Bird Study 46 (Supplement): S279–S288.CrossRefGoogle Scholar
Green, R. E., Hawell, J. and Johnson, T. H. (1987) Identification of predators of wader eggs from egg remnants. Bird Study 34: 8791.CrossRefGoogle Scholar
Groen, N. M. and Hemerik, L. (2002) Reproductive success and survival of Black-tailed Godwits Limosa limosa in a declining local population in the Netherlands. Ardea 90: 239248.Google Scholar
Guilford, T. C. and Dawkins, M. S. (1987) Search images not proven: a reappraisal of recent evidence. Anim. Behav. 35: 18381845.CrossRefGoogle Scholar
Gysel, L. W. and Davis, E. M. (1956) A simple automatic photographic unit for wildlife research. J. Wildl. Manage. 20: 451453.CrossRefGoogle Scholar
Hannon, S. J., Martin, K., Thomas, L. and Schieck, J. (1993) Investigator disturbance and clutch predation in Willow Ptarmigan: methods for evaluating impact. J. Field Ornithol. 64: 575586.Google Scholar
Herranz, J., Yanes, M. and Suárez, F. (2002) Does photo-monitoring affect nest predation? J. Field Ornithol. 73: 97101.CrossRefGoogle Scholar
Herring, G., Ackerman, J. T., Takekawa, J. Y., Eagles-Smith, C. A. and Eadie, J. M. (2011) Identifying nest predators of American Avocets (Recurvirostra americana) and Black-Necked Stilts (Himantopus mexicanus) in San Francisco Bay, California. Southw. Naturalist 56: 3543.CrossRefGoogle Scholar
Ibáñez-Álamo, J. D., Sanllorente, O. and Soler, M. (2012) The impact of researcher disturbance on nest predation rates: a meta-analysis. Ibis 154: 514.CrossRefGoogle Scholar
Kentie, R., Booth, C., Hooijmeijer, J. C. E. W. and Piersma, T. (2015) Management of modern agricultural landscapes increases nest predation rates in Black-tailed Godwits Limosa limosa . Ibis 157: 614625.CrossRefGoogle Scholar
Kentie, R., Hooijmeijer, J. C. E. W., Trimbos, K. B., Groen, N. M. and Piersma, T. (2013) Intensified agricultural use of grasslands reduces growth and survival of precocial shorebird chicks. J. Appl. Ecol. 50: 243251.CrossRefGoogle Scholar
Kentie, R., Senner, N. R., Hooijmeijer, J. C. E. W., Márquez-Ferrando, R., Figuerola, J., Masero, J. A., Verhoeven, M. A. and Piersma, T. (2016) Estimating the size of the Dutch breeding population of Continental Black-tailed Godwits from 2007–2015 using resighting data from spring staging sites. Ardea 114: 213225.CrossRefGoogle Scholar
Kleijn, D., Schekkerman, H., Dimmers, W. J., van Kats, R. J. M., Melman, D. and Teunissen, W. A. (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152: 475486.CrossRefGoogle Scholar
Krebs, J. R. (1973) Behavioral aspects of predation. Pp. 72111 in Bateson, P. P. G. and Klopfer, P. H., eds. Perspectives in ethology. Boston, USA: Springer.Google Scholar
Langley, C. M. (1996) Search images: Selective attention to specific visual features of prey. J. Experimental Psychol.: Anim. Behav. Processes 22: 152163.Google Scholar
Larivière, S. (1999) Reasons why predators cannot be inferred from nest remains. Condor 101: 718721.Google Scholar
Lenington, S. (1979) Predators and Blackbirds: The "uncertainty principle" in field biology. Auk 96: 190192.CrossRefGoogle Scholar
Liebezeit, J. R. and George, T. L. (2003) Comparison of mechanically egg-triggered cameras and time-lapse video cameras in identifying predators at Dusky Flycatcher nests. J. Field Ornithol. 74: 261269.CrossRefGoogle Scholar
MacDonald, M. A. and Bolton, M. (2008) Predation on wader nests in Europe. Ibis 150 (Suppl. 1): 5473.CrossRefGoogle Scholar
MacInnes, C. D. and Misra, R. K. (1972) Predation on Canada Goose nests at McConnell River, Northwest Territories. J. Wildl. Manage. 36: 414422.CrossRefGoogle Scholar
Major, R. E. (1990) The effect of human observers on the intensity of nest predation. Ibis 132: 608612.CrossRefGoogle Scholar
Mallord, J. W., Orsman, C. J., Cristinacce, A., Butcher, N., Stowe, T. J. and Charman, E. C. (2012) Mortality of Wood Warbler Phylloscopus sibilatrix nests in Welsh oakwoods: predation rates and the identification of nest predators using miniature nest cameras. Bird Study 59: 286295.CrossRefGoogle Scholar
Mayfield, H. F. (1975) Suggestions for calculating nest success. Wilson Bull. 87: 456466.Google Scholar
McKinnon, L. and Bêty, J. (2009) Effect of camera monitoring on survival rates of High Arctic shorebird nests. J. Field Ornithol. 80: 280288.CrossRefGoogle Scholar
Meek, P., Ballard, G., Fleming, P. and Falzon, G. (2016) Are we getting the full picture? Animal responses to camera traps and implications for predator studies. Ecol. Evol. 6: 32163225.https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=MAJOR%2C+RICHARD+E CrossRefGoogle ScholarPubMed
Miller, J. R. and Hobbs, N. T. (2000) Recreational trails, human activity, and nest predation in lowland riparian areas. Landscape Urban Planning 50: 227236.CrossRefGoogle Scholar
Nehls, G. (2001) Entwicklung der Wiesenvogelbestände im Naturschutzgebiet Alte-Sorge-Schleife, Schleswig-Holstein. Corax 18 (Sonderheft 2): 81101.Google Scholar
Pietz, P. J. and Granfors, D. A. (2000) Identifying predators and fates of grassland passerine nests using miniature video cameras. J. Wildl. Manage. 64: 7187.CrossRefGoogle Scholar
Reid, P. J. and Shettleworth, S. J. (1992) Detection of cryptic prey: Search image or search rate? J. Experimental Psychol.: Anim. Behav. Processes 18: 273286.Google ScholarPubMed
Richardson, T. W., Gardali, T. and Jenkins, S. H. (2009) Review and meta‐analysis of camera effects on avian nest success. J. Wildl. Manage. 73: 287293.CrossRefGoogle Scholar
Robinson, R. A., Morrison, C. A. and Baillie, S. R. (2014) Integrating demographic data: towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5: 13611372.CrossRefGoogle Scholar
Rollinson, N. and Brooks, R. J. (2007) Marking nests increases the frequency of nest depredation in a northern population of Painted Turtles (Chrysemys picta). J. Herpetol. 41: 174176.CrossRefGoogle Scholar
Roodbergen, M., van der Werf, B. and Hötker, H. (2012) Revealing the contribution of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J. Ornithol. 153: 5374.CrossRefGoogle Scholar
Royama, T. (1959) A device of an auto-cinematic food-recorder. Japanese J. Ornithol. 15: 172176.CrossRefGoogle Scholar
Salathe, T. (1987) Crow predation on Coot eggs: effects of investigator disturbance, nest cover and predator learning. Ardea 75: 221229.Google Scholar
Salewski, V. and Schmidt, L. (2016) Beeinflussen Nestkameras den Schlupferfolg von Uferschnepfen Limosa limosa. Ber. Vogelwarte Hiddensee 23: 4757.Google Scholar
Salewski, V. and Schmidt, L. (2019) The raccoon dog - an important new nest predator of black-tailed Godwit in northern Germany. Wader Study 126: 2834.CrossRefGoogle Scholar
Salewski, V., Schmidt, L., Evers, A., Klinner-Hötker, B. and Hötker, H. (2016) Bruterfolg von Uferschnepfen Limosa limosa in Schleswig-Holstein. Vogelkdl. Ber. Niedersachs. 44: 245258.Google Scholar
Salewski, V., Evers, A. and Schmidt, L. (2019) Wildkameras ermitteln Verlustursachenvon Gelegen der Uferschnepfe (Limosa limosa). Natur und Landschaft 94: 5965.Google Scholar
Sanders, M. D. and Maloney, R. F. (2002) Causes of mortality at nests of ground-nesting birds in the Upper Waitaki Basin, South Island, New Zealand: a 5-year video study. Biol. Conserv. 106: 225236.CrossRefGoogle Scholar
Schekkerman, H., Teunissen, W. and Oosterveld, E. (2006) Breeding success of Black-tailed Godwits Limosa limosa under‚ mosiac management‘, an experimental agri-environment scheme in The Netherlands. Osnabrücker Naturwiss. Mitt. 32: 131136.Google Scholar
Schekkerman, H., Teunissen, W. and Oosterveld, E. (2008) The effect of ‚mosaic management‘ on the demography of black-tailed godwit Limosa limosa on farmland. J. Appl. Ecol. 45: 10671075.Google Scholar
Schekkerman, H., Teunissen, W. and Oosterveld, E. (2009) Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: influence of predation and agriculture. J. Ornithol. 150: 133145.CrossRefGoogle Scholar
Schroeder, J., Hooijmeijer, J., Both, C. and Piersma, T. (2006) The importance of early breeding in Black-tailed Godwits (Limosa limosa). Osnabrücker Naturwiss. Mitt. 32: 239241.Google Scholar
Snelling, J. C. (1968) Overlap in feeding habits of Red-winged Blackbirds and Common Grackles nesting in a Cattail marsh. Auk 85: 560585.CrossRefGoogle Scholar
Staller, E. L., Palmer, W. E., Carroll, J. P., Thornton, R. P. and Sisson, D. C. (2005) Identifying predators at Northern Bobwhite nests. J. Wildl. Manage. 69: 124132.2.0.CO;2>CrossRefGoogle Scholar
Strang, C. A. (1980) Incidence of avian predators near people searching for waterfowl nests. J. Wildl. Manage. 44: 220222.CrossRefGoogle Scholar
Teunissen, W., Schekkerman, H. and Willems, F. (2006) Predation on meadowbirds in The Netherlands – results of a four year study. Osnabrücker Naturwiss. Mitt. 32: 137143.Google Scholar
Teunissen, W., Schekkerman, H., Willems, F. and Majoor, F. (2008) Identifying predators of eggs and chicks of Lapwing (Vanellus vanellus) and Black-tailed Godwit (Limosa limosa) in the Netherlands and the importance of predation on wader reproductive output. Ibis 150: 7485.CrossRefGoogle Scholar
Thompson, F. R., Dijak, W. and Burhans, D. E. (1999) Video identification of predators at songbird nests in old fields. Auk 116: 259264.CrossRefGoogle Scholar
Tinbergen, L. (1960) The natural control of insects in pine woods I. Factors influencing the intensity of predation by songbirds. Archives Néerlandaises de Zoologie 13: 265343.CrossRefGoogle Scholar
Valkama, J. and Currie, D. (1999) Low productivity of Curlews Numenius arquata on farmland in southern Finland: Causes and consequences. Ornis Fennica 76: 6570.Google Scholar
van Paassen, A. G., Veldman, D. H. and Beintema, A. J. (1984) A simple device for determination of incubation stages in eggs. Wildfowl 35: 173178.Google Scholar
Verboven, N., Ens, B. J. and Dechesne, S. (2001) Effect of investigator disturbance on nest attendance and egg predation in Eurasian Oystercatchers. Auk 118: 503508.CrossRefGoogle Scholar
Westmoreland, D. and Best, L. B. (1985) The effect of disturbance on Mourning Dove nesting success. Auk 102: 774780.Google Scholar
Weston, M. A., Ekanayake, K. B., Lomas, S., Glover, H. K., Mead, R. E., Cribbin, A., Tan, L. X. L., Whisson, D. A, Maguire, G. S. and Cardilini, A. P. A. (2017) Case studies of motion-sensing cameras to study clutch survival and fate of real and artificial ground-nests in Australia. Bird Study 64: 476491.CrossRefGoogle Scholar
Whelan, C. J., Dilger, M. L., Robson, D., Hallyn, L., Dilger, S. (1994) Effects of olfactory cues on artificial-nest experiments. Auk 111: 945952.CrossRefGoogle Scholar
Yahner, R. H. and Wright, A. L.. (1985) Depredation on artificial ground nests: Effects of edge and plot age. J. Wildl. Manage. 49: 508513.CrossRefGoogle Scholar
Zámecník, V., Kubelka, V. and Sálek, M. (2018) Visible marking of wader nests to avoid damage by farmers does not increase nest predation. Bird Conserv. Internatn. 28: 293301.CrossRefGoogle Scholar