Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:03:06.907Z Has data issue: false hasContentIssue false

Language-dependent knowledge acquisition: investigating bilingual arithmetic learning

Published online by Cambridge University Press:  05 October 2017

CHRISTIAN G. K. HAHN*
Affiliation:
Institute of Psychology, University of Göttingen, Germany Faculty of Education, University of Leipzig, Germany
HENRIK SAALBACH
Affiliation:
Faculty of Education, University of Leipzig, Germany
ROLAND H. GRABNER
Affiliation:
Institute of Psychology, University of Graz, Austria
*
Address for correspondence: Christian G. K. Hahn, Room 216, Faculty of Education, University of Leipzig, Marschnerstr. 31, 04109 Leipzigchristian.hahn@uni-leipzig.de

Abstract

Previous studies revealed language-switching costs (LSC) in bilingual learning settings, consisting of performance decreases when problems are solved in a language different from that of instruction. Strong costs have been found for arithmetic fact knowledge. The aim of the present study was to investigate whether LSC in arithmetic also emerge in an auditory learning task and in pure fact learning. Furthermore, we tested whether LSC are influenced by the direction of language-switching. Thirty-three university students learned arithmetic facts of three different operations (i.e., multiplication, subtraction, artificial facts) over a period of four days. The training was either in German or English. On day five, participants solved problems in both languages. Results revealed LSC in response latencies for all three types of problems, independent of the direction of language-switching. These findings suggest that LSC are modality-unspecific and occur independent of the type of arithmetic fact knowledge.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I am grateful to Dr. Stephan Vogel, Frieder Schillinger, and Maria Schneider for their support during the process of conducting this research.

References

Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Learning and Memory, 4 (5), 527.Google Scholar
Ashcraft, M. H., & Stazyk, E. H. (1981). Menatal addition: A test of three verification models. Memory & Cognition, 9 (2), 185196.Google Scholar
Barber, S. J., Rajaram, S., & Aron, A. (2010). When two is too many: Collaborative encoding impairs memory. Memory & Cognition, 38 (3), 255264.Google Scholar
Benn, Y., Zheng, Y., Wilkinson, I. D., Siegal, M., & Varley, R. (2012). Language in calculation: A core mechanism? Neuropsychologia, 50 (1), 110.Google Scholar
Boroditsky, L., Fuhrman, O., & McCormick, K. (2011). Do English and Mandarin speakers think about time differently? Cognition, 118 (1), 123129.Google Scholar
Campbell, J. I., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130 (2), 299315.Google Scholar
Campbell, J. I. (2005). Asymmetrical language switching costs in Chinese–English bilinguals' number naming and simple arithmetic. Bilingualism: Language and Cognition, 8 (1), 8591.Google Scholar
Chen, Z. Y., Cowell, P. E., Varley, R., & Wang, Y. C. (2009). A cross-language study of verbal and visuospatial working memory span. Journal of Clinical and Experimental Neuropsychology, 31 (4), 385391.Google Scholar
Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33 (2), 219250.Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20 (3-6), 487506.Google Scholar
Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current opinion in neurobiology, 14 (2), 218224.Google Scholar
Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—an fMRI study. Cognitive Brain Research, 18 (1), 7688.Google Scholar
De Smedt, B., Grabner, R. H., & Studer, B. (2009). Oscillatory EEG correlates of arithmetic strategy use in addition and subtraction. Experimental brain research, 195 (4), 635642.Google Scholar
Domahs, F., & Delazer, M. (2005). Some assumptions and facts about arithmetic facts. Psychology Science, 47 (1), 96111.Google Scholar
Ellis, N. C., & Hennelly, R. A. (1980). A bilingual word-length effect: Implications for intelligence testing and the relative ease of mental calculation in Welsh and English. British Journal of Psychology, 71 (1), 4351.Google Scholar
Eurydice. (2006). Content and language integrated learning (CLIL) at school in Europe. Brussels, Belgium: Eurydice European Unit.Google Scholar
Fausey, C. M., & Boroditsky, L. (2011). Who dunnit? Cross-linguistic differences in eye-witness memory. Psychonomic bulletin & review, 18 (1), 150157.Google Scholar
Frenck-Mestre, C., & Vaid, J. (1993). Activation of number facts in bilinguals. Memory and Cognition 21, 809818.Google Scholar
Fuson, K. C., & Kwon, Y. (1992). Learning addition and subtraction: Effects of number words and other cultural tools. In Bideaud, J., Meljac, C., & Fischer, J. P. (Eds.). (2013). Pathways to number: Children's developing numerical abilities. Psychology Press.Google Scholar
Gentner, D., & Goldin-Meadow, S. (2003). Whither whorf. Language in mind: Advances in the study of language and cognition, 314.Google Scholar
Göbel, S. M., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2014). Language affects symbolic arithmetic in children: the case of number word inversion. Journal of experimental child psychology, 119, 1725.Google Scholar
Grabner, R. H., & De Smedt, B. (2012). Oscillatory EEG correlates of arithmetic strategies: a training study. Frontiers in psychology, 3.Google Scholar
Grabner, R. H., Saalbach, H., & Eckstein, D. (2012). Language-Switching Costs in Bilingual Mathematics Learning. Mind, Brain, and Education, 6 (3), 147155.Google Scholar
Gumperz, J. J., & Levinson, S. C. (1996). Introduction to part I. In Gumperz, J. J. (1996). Rethinking Linguistic Relativity, pp. 2136. UK: Cambridge University Press.Google Scholar
Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30 (4), 13651375.Google Scholar
Kempert, S., Saalbach, H., & Hardy, I. (2011). Cognitive benefits and costs of bilingualism in elementary school students: The case of mathematical word problems. Journal of educational psychology, 103 (3), 547.Google Scholar
Jost, K., Beinhoff, U., Hennighausen, E., & Rösler, F. (2004). Facts, rules, and strategies in single-digit multiplication: evidence from event-related brain potentials. Cognitive Brain Research, 20 (2), 183193.Google Scholar
Klessinger, N., Szczerbinski, M., & Varley, R. (2012). The role of number words: the phonological length effect in multidigit addition. Memory & cognition, 40 (8), 12891302.Google Scholar
Lasagabaster, D., & Sierra, J. M. (2009). Immersion and CLIL in English: more differences than similarities. ELT journal, 64 (4), 367375.Google Scholar
Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of neurology, 48(4), 657661.Google Scholar
LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22 (1), 216.Google Scholar
Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41 (14), 19421958.Google Scholar
Lemhöfer, K., & Broersma, M. (2012). Introducing LexTALE: A quick and valid lexical test for advanced learners of English. Behavior Research Methods, 44 (2), 325343.Google Scholar
Malt, B., & Wolff, P. (Eds.). (2010). Words and the mind: How words capture human experience. New York: Oxford University Press.Google Scholar
Marian, V., & Fausey, C. M. (2006). Language-dependent memory in bilingual learning. Applied Cognitive Psychology, 20 (8), 10251047.Google Scholar
Marian, V., & Neisser, U. (2000). Language-dependent recall of autobiographical memories. Journal of Experimental Psychology: General, 129 (3), 361.Google Scholar
Meuter, R. F., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of memory and language, 40 (1), 2540.Google Scholar
Miller, K. F., Smith, C. M., Zhu, J., & Zhang, H. (1995). Preschool origins of cross-national differences in mathematical competence: The role of number-naming systems. Psychological Science, 6 (1), 5660.Google Scholar
Mochida, K., & Harrington, M. (2006). The yes/no test as a measure of receptive vocabulary knowledge. Language Testing, 2, 7398.Google Scholar
Möller, J., Hohenstein, F., Fleckenstein, J., Köller, O., & Baumert, J. (Eds.). (2017). Erfolgreich integrieren-die Staatliche Europa-Schule Berlin. Waxmann Verlag.Google Scholar
Núñez-Peña, M. I., Cortiñas, M., & Escera, C. (2006). Problem size effect and processing strategies in mental arithmetic. Neuroreport, 17 (4), 357360.Google Scholar
Park, M. (1999). Linguistic influence on numerical development. The Mathematics Educator, 10 (1).Google Scholar
Quick Placement Test. (2001). Oxford: Oxford University Press.Google Scholar
Saalbach, H., & Imai, M. (2007). Scope of linguistic influence: Does a classifier system alter object concepts? Journal of Experimental Psychology: General, 136 (3), 485.Google Scholar
Saalbach, H., Eckstein, D., Andri, N., Hobi, R., & Grabner, R. H. (2013). When language of instruction and language of application differ: Cognitive costs of bilingual mathematics learning. Learning and Instruction, 26, 3644.Google Scholar
Schneider, W., Eschmann, A., & Zuccolotto, A. (2002). E-Prime v1. 1. Pittsburgh, PA: Psychology Software Tools Inc.Google Scholar
Spelke, E. S., & Tsivkin, S. (2001). Language and number: a bilingual training study. Cognition, 78 (1).Google Scholar
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological review, 80 (5), 352.Google Scholar
Van Rinsveld, A., Brunner, M., Landerl, K., Schiltz, C., & Ugen, S. (2015). The relation between language and arithmetic in bilinguals: insights from different stages of language acquisition. Frontiers in psychology, 6.Google Scholar
Venkatraman, V., Siong, S. C., Chee, M. W., & Ansari, D. (2006). Effect of language switching on arithmetic: A bilingual fMRI study. Journal of Cognitive Neuroscience, 18 (1), 6474.Google Scholar
Wolff, P., & Holmes, K. J. (2011). Linguistic relativity. Wiley Interdisciplinary Reviews: Cognitive Science, 2 (3), 253265.Google Scholar
Zaunbauer, A. C. M., Bonerad, E. M., & Möller, J. (2005). Muttersprachliches Leseverständnis immersiv unterrichteter Kinder 1 Dieser Beitrag wurde von DH Rost akzeptiert. Zeitschrift für Pädagogische Psychologie, 19 (4), 263265.Google Scholar
Zaunbauer, A. C. M., & Möller, J. (2009). Schulleistungsentwicklung immersiv unterrichteter Grundschüler in den ersten zwei Schuljahren. Psychologie in Erziehung und Unterricht, (1), 3045.Google Scholar